[1] KALEGELE K, SASAI K, TAKAHASHI H, et al. Four decades of data mining in network and systems management[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(10):2700-2716. [2] 苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859.(SU J S, ZHANG B F, XU X. Advances in machine learning based text categorization[J]. Journal of Software, 2006, 17(9):1848-1859.) [3] LIU W, CHAWLA S. Class confidence weighted kNN algorithms for imbalanced data sets[C]//Proceedings of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, LNCS 6635. Berlin:Springer, 2011:345-356. [4] LIU Z G, PAN Q, DEZERT J. A new belief-based K-nearest neighbor classification method[J]. Pattern Recognition, 2013, 46(3):834-844. [5] ZHANG L, ZHANG C J, XU Q Y, et al. Weigted-KNN and its application on UCI[C]//Proceedings of the 2015 IEEE International Conference on Information and Automation. Piscataway, NJ:IEEE, 2015:1748-1750. [6] 刘闯.基于多核计算的分类数据挖掘算法研究[D].南京:南京航空航天大学,2011:12-20.(LIU C. Research on classification algorithms based on multicore computing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:12-20.) [7] ANCHALIA P P, ROY K. The k-nearest neighbor algorithm using MapReduce paradigm[C]//Proceedings of the 20145th International Conference on ISMS (Intelligent Systems, Modelling and Simulation). Piscataway, NJ:IEEE, 2014:513-518. [8] LU S P, TONG W Q, CHEN Z J. Implementation of the KNN algorithm based on Hadoop[C]//Proceedings of the 2015 International Conference on Smart and Sustainable City and Big Data. London:IET, 2015:123-126. [9] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[C]//OSDI'04:Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation. Berkeley, CA:USENIX Association, 2004, 6:137-149. [10] GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system[J]. ACM SIGOPS Operating Systems Review, 2003, 37(5):29-43. [11] GROLINGER K, HAYES M, HIGASHINO W A, et al. Challenges for MapReduce in big data[C]//Proceedings of the 2014 IEEE World Congress on Services. Piscataway, NJ:IEEE, 2014:182-189. [12] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//NSDI'12:Proceedings of the 9th Usenix Conference on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2012:141-146. [13] 夏宁霞,苏一丹,覃希.一种高效的K-medoids聚类算法[J].计算机应用研究,2010,27(12):4517-4519.(XIA N X, SU Y D, QIN X. Efficient K-medoids clustering algorithm[J]. Application Research of Computers, 2010, 27(12):4517-4519.) [14] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27. [15] ZAHARIA M, CHOWDHURY M, FRANKLIN,M J, et al. Spark:cluster computing with working sets[C]//Proceedings of the 20102nd Usenix Conference on Hot Topics in Cloud Computing. Berkeley, CA:USENIX Association, 2010:1765-1773. [16] NIU K, ZHAO F, ZHANG S B. A fast classification algorithm for big data based on KNN[J]. Journal of Applied Sciences, 2013, 13(12):2208-2212. [17] CHEN X Q, PENG H, HU J S. K-medoids substitution clustering method and a new clustering validity index method[C]//WCICA 2006:Proceedings of the 20066th World Congress on Intelligent Control and Automation. Piscataway, NJ:IEEE, 2006:5896-5900. [18] 罗贤锋,祝胜林,陈泽健,等.基于K-Medoids聚类的改进KNN文本分类算法[J].计算机工程与设计,2014,35(11):3864-3867.(LUO X F, ZHU S L, CHEN Z J, et al. Improved KNN text categorization algorithm based on K-Medoids algorithm[J]. Computer Engineering and Design, 2014, 35(11):3864-3867.) |