[1] HUNT L, JORGENSEN M. Clustering mixed data[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1(4):352-361. [2] BORIAH S, CHANDOLA V, KUMAR V. Similarity measures for categorical data: a comparative evaluation[C]//Proceedings of the 8th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2008: 243-254. [3] CHEN L, WANG S. Central clustering of categorical data with automated feature weighting[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2013: 1260-1266. [4] GUHA S, RASTOGI R, SHIM K. ROCK: a robust clustering algorithm for categorical attributes[J]. Information Systems, 2000, 25(5):345-366. [5] XIONG T, WANG S, MAYERS A, et al. DHCC: divisive hierarchical clustering of categorical data[J]. Data Mining and Knowledge Discovery, 2012, 24(1):103-135. [6] MACQUEEN J. Some methods for classification and analysis of multivariate observation[C]//Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967: 281-297. [7] JI J, BAI T, ZHOU C, et al. An improved k-prototypes clustering algorithm for mixed numeric and categorical data[J]. Neurocomputing, 2013, 120:590-596. [8] SAN O, HUYNH V, NAKAMORI Y. An alternative extension of the k-means algorithm for clustering categorical data[J]. International Journal of Applied Mathematics and Computer Science, 2004, 14(2):241-247. [9] HUANG Z, NG M. A note on k-modes clustering[J]. Journal of Classification, 2003, 20(2):257-261. [10] 李仁侃, 叶东毅. 粗糙k-modes聚类算法[J]. 计算机应用, 2011, 31(1): 97-100.(LI R K, YE D Y. Rough k-modes clustering algorithm[J]. Journal of Computer Applications, 2011, 31(1): 97-100.) [11] HUANG Z. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304. [12] 梁吉业, 白亮, 曹付元. 基于新的距离度量的k-modes聚类算法[J]. 计算机研究与发展, 2010, 47(10):1749-1755.(LIANG J Y, BAI L, CAO F Y. k-modes clustering algorithm based on a new distance measure[J]. Journal of Computer Research and Development, 2010, 47(10):1749-1755.) [13] LIN D. An information-theoretic definition of similarity[C]//Proceedings of the 15th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1998: 296-304. [14] GOODALL D. A new similarity index based on probability[J]. Biometrics, 1966, 22(4):882-907. [15] BAI L, LIANG J, DANG C, et al. A novel attribute weighting algorithm for clustering high-dimensional categorical data[J]. Pattern Recognition, 2011, 44(12): 2843-2861. [16] CAO F, LIANG J, LI D, et al. A weighting k-modes algorithm for subspace clustering of categorical data[J]. Neurocomputing, 2013, 108: 23-30. [17] CHEN L, WANG S, WANG K, et al. Soft subspace clustering of categorical data with probabilistic distance[J]. Pattern Recognition, 2016, 51:322-332. [18] 陈黎飞, 郭躬德. 属性加权的类属型数据非模聚类[J]. 软件学报, 2013, 24(11):2628-2641.(CHEN L F, GUO G D. Non-mode clustering of categorical data with attributes weighting[J]. Journal of Software, 2013, 24(11):2628-2641.) [19] HUANG Z, NG M, RONG H, et al. Automated variable weighting in k-means type clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):657-668. [20] BOUGUESSA M. Clustering categorical data in projected spaces[J]. Data Mining and Knowledge Discovery, 2015, 29(1): 3-38. [21] CHEN L. A probabilistic framework for optimizing projected clusters with categorical attributes[J]. Science China Information Sciences, 2015, 58(7): 072104(15). [22] LIANG J, ZHAO X, LI D, et al. Determining the number of clusters using information entropy for mixed data[J]. Pattern Recognition, 2012, 45(6):2251-2265. |