Journal of Computer Applications ›› 2017, Vol. 37 ›› Issue (8): 2218-2222.DOI: 10.11772/j.issn.1001-9081.2017.08.2218

Previous Articles     Next Articles

Phase space probabilistic clustering algorithm based on multi-scale quantum harmonic oscillator algorithm

WANG Ziyi1, AN Junxiu1, WANG Peng2   

  1. 1. Parallel Computing Laboratory, Chengdu University of Information Technology, Chengdu Sichuan 610225, China;
    2. School of Computer Science and Technology, Southwest Minzu University, Chengdu Sichuan 610225, China
  • Received:2017-02-15 Revised:2017-03-13 Online:2017-08-10 Published:2017-08-12
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (71673032).

基于多尺度量子谐振子算法的相空间概率聚类算法

王梓懿1, 安俊秀1, 王鹏2   

  1. 1. 成都信息工程大学 并行计算实验室, 成都 610225;
    2. 西南民族大学 计算机科学与技术学院, 成都 610225
  • 通讯作者: 安俊秀
  • 作者简介:王梓懿(1993-),男,广西贺州人,硕士研究生,主要研究方向:分布式计算、智能算法;安俊秀(1970-),女,山西临汾人,教授,硕士,CCF会员,主要研究方向:社会计算、分布式计算;王鹏(1975-),男,四川乐山人,教授,博士,CCF会员,主要研究方向:分布式计算、智能算法。
  • 基金资助:
    国家自然科学基金资助项目(71673032)。

Abstract: A Phase Space Probabilistic Clustering Algorithm based on Multi-scale Quantum Harmonic Oscillator Algorithm (PSPCA-MQHOA) was proposed to solve the task scheduling and resource allocation of large clusters. Firstly, the cluster operating status was projected into the phase space, and the complex working state was transformed into the point set in the phase space. Furthermore, the phase space was meshed to form the Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) for discrete objective function. Finally, probabilistic clustering of cluster nodes was carried out by using the probability interpretation of wave function in the MQHOA process. PSPCA-MQHOA inherits the advantages of MQHOA, such as explicit physical model, strong search capabilities and accurate results, and it has few iterations due to the discretized phase space. Experimental results show that PSPCA-MQHOA can be applied to clusters in a variety of load conditions.

Key words: probabilistic clustering, quantum harmonic oscillator, phase space, wave function, cluster

摘要: 针对大型集群难以进行任务调度和资源分配的问题,提出一种基于多尺度量子谐振子算法的相空间概率聚类算法(PSPCA-MQHOA)。首先,将集群工作状态投影到相空间中,把复杂的集群工作状态转化为相空间中的点集;进而,将相空间网格化,形成多尺度量子谐振子算法(MQHOA)以处理离散目标函数;最后,利用MQHOA优化过程中波函数变化的概率解释对集群节点进行概率聚类。PSPCA-MQHOA继承了MQHOA物理模型明确、搜索能力强、结果精确等优点,并且由于以相空间作为离散化的目标函数,迭代次数大大减少。实验结果表明PSPCA-MQHOA能适用于多种负载状态的集群。

关键词: 概率聚类, 量子谐振子, 相空间, 波函数, 集群

CLC Number: