[1] UZAIR M, SHAFAIT F, GHANEM B, et al. Representation learning with deep extreme learning machines for efficient image set classification[J]. Neural Computing and Applications, 2018, 30(4):1211-1223.
[2] 李光早,王士同.基于稀疏表示和弹性网络的人脸识别[J].计算机应用,2017,37(3):901-905.(LI G Z, WANG S T. Face recognition based on sparse representation and elastic network[J]. Journal of Computer Applications, 2017, 37(3):901-905.)
[3] 刘天赐, 史泽林, 刘云鹏,等.基于Grassmann流形几何深度网络的图像集识别方法[J].红外与激光工程, 2018,47(7):25-31.(LIU T C, SHI Z L, LIU Y P, et al. Geometry deep network image-set recognition method based on Grassmann manifolds[J]. Infrared and Laser Engineering, 2018, 47(7):25-31.)
[4] KIM T, KITTLER J, CIPOLLA R. Discriminative learning and recognition of image set classes using canonical correlations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1005-1018.
[5] HAYAT M, BENNAMOUN M, AN S. Learning non-linear reconstruction models for image set classification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:1907-1914.
[6] 郑萍萍,李波,丁玉琳.基于局部邻域多流形度量的人脸识别[J].计算机应用研究,2018,35(4):1250-1253.(ZHENG P P, LI B, DING Y L. Local neighborhood based multi-manifold metric learning for face recognition[J]. Application Research of Computers, 2018, 35(4):1250-1253.)
[7] WANG R, GUO H, DAVIS L S, et al. Covariance discriminative learning:A natural and efficient approach to image set classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:2496-2503.
[8] HU Y, MIAN A S, OWENS R. Face recognition using sparse approximated nearest points between image sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1992-2004.
[9] YANG M, ZHU P, van GOOL L, et al. Face recognition based on regularized nearest points between image sets[C]//Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Piscataway, NJ:IEEE, 2013:1-7.
[10] WU Y, MINOH M, MUKUNOKI M. Collaboratively regularized nearest points for set based recognition[C]//Proceedings of the 2013 British Machine Vision Conference. Durham:BMVA Press, 2013:No.0134.
[11] 唐宋,陈利娟,陈志贤,等.基于目标域局部近邻几何信息的域自适应图像分类方法[J].计算机应用,2017,37(4):1164-1168. (TANG S, CHEN L J, CHEN Z X, et al. Domain adaptation image classification based on target local-neighbor geometrical information[J]. Journal of Computer Applications, 2017,37(4):1164-1168.)
[12] CAO F, YANG Z, REN J, et al. Sparse representation-based augmented multinomial logistic extreme learning machine with weighted composite features for spectral-spatial classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11):6263-6279.
[13] YANG M, LIU W, SHEN L, et al. Joint regularized nearest points for image set based face recognition[C]//Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Washington, DC:IEEE Computer Society, 2015:1-7.
[14] LIU W, POKHAREL P P, PRINCIPE J C. Correntropy:properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11):5286-5298.
[15] CHEN B, WANG X, LU N, et al. Mixture correntropy for robust learning[J]. Pattern Recognition, 2018, 79:318-327.
[16] GOU G, SHI J, XIONG G, et al. Image-set based collaborative representation for face recognition in videos[C]//Proceedings of the 2017 Pacific Rim Conference on Multimedia, LNCS 10736. Berlin:Springer, 2017:498-507.
[17] HAYAT M, KHAN S H, BENNAMOUN M. Empowering simple binary classifiers for image set based face recognition[J]. International Journal of Computer Vision, 2017, 123(3):479-498.
[18] FERRARI C, BERRETTI S, del BIMBO A. Extended YouTube faces:a dataset for heterogeneous open-set face identification[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2018:3408-3413. |