[1] STEWART B,WILD C P. World Cancer Report 2014[M]. Geneva:World Health Organization,2014:16-53. [2] 颜嵩林, 林溢星, 李鹤喜, 等. 基于多重迁移学习的糖尿病视网膜病变检测[J]. 中国数字医学,2019,14(3):26-30.(YAN S L, LIN Y X,LI H X,et al. Diabetic retinopathy detection based on multiple transfer learning[J]. China Digital Medicine,2019,14(3):26-30.) [3] GULSHAN V,PENG L,CORAM M,et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. Journal of the American Medical Association,2016,316(22):2402-2410. [4] 庞浩, 王枞. 用于糖尿病视网膜病变检测的深度学习模型[J]. 软件学报,2017,28(11):3018-3029. (PANG H,WANG C. Deep learning model for diabetic retinopathy detection[J]. Journal of Software,2017,28(11):3018-3029.) [5] ESTEVA A,KUPREL B,NOVOA R A,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115-118. [6] DORJ U O,LEE K K,CHOI J Y,et al. The skin cancer classification using deep convolutional neural network[J]. Multimedia Tools and Applications,2018,77(8):9909-9924. [7] 林伟铭, 高钦泉, 杜民. 卷积神经网络诊断阿尔兹海默症的方法[J]. 计算机应用,2017,37(9):3504-3508. (LIN W M,GAO Q Q,DU M. Convolutional neural network based method for diagnosis of Alzheimer's disease[J]. Journal of Computer Applications, 2017,37(9):3504-3508.) [8] SARRAF S,TOFIGHI G. Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data[C]//Proceeding of the 2016 Future Technologies Conference. Piscataway:IEEE, 2016:816-820. [9] 吕鸿蒙, 赵地, 迟学斌. 基于增强AlexNet的深度学习的阿尔茨海默病的早期诊断[J]. 计算机科学,2017,44(6A):50-60. (LYU H M,ZHAO D,CHI X B. Deep learning for early diagnosis of Alzheimer's disease based on intensive AlexNet[J]. Computer Science,2017,44(6A):50-60.) [10] COUDRAY N,OCAMPO P S,SAKELLAROPOULOS T,et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nature Medicine,2018,24(10):1559-1567. [11] 张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报,2018,30(1):90-99.(ZHANG P,XU X N,WANG H W,et al. Computer-assisted lung cancer diagnosis approaches based on deep learning[J]. Journal of Computer-Aided Design and Computer Graphics,2018,30(1):90-99.) [12] SPAMPINATO C,PALAZZO S,GIORDANO D,et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Medical Image Analysis,2017,36:41-51 [13] 刘鸣谦, 兰钧, 陈旭, 等. 基于多维度特征融合的深度学习骨龄评估模型[J]. 第二军医大学学报,2018,39(8):909-916.(LIU M Q,LAN J,CHEN X,et al. Bone age assessment model based on multi-dimensional feature fusion using deep learning[J]. Academic Journal of Second Military Medical University,2018,39(8):909-916.) [14] ARAÚJO T,ARESTA G,CASTRO E,et al. Classification of breast cancer histology images using convolutional neural networks[J]. PLoS One,2017,12(6):No. e0177544. [15] BAYRAMOGLU N,KANNALA J,HEIKKILÄ J. Deep learning for magnification independent breast cancer histopathology image classification[C]//Proceeding of the 23rd International Conference on Pattern Recognition. Piscataway:IEEE,2016:2440-2445. [16] WEI B,HAN Z,HE X,et al. Deep learning model based breast cancer histopathological image classification[C]//Proceeding of the 2nd International Conference on Cloud Computing and Big Data Analysis. Piscataway:IEEE,2017:348-353. [17] CHEN Y, FAN H, XU B, et al. Drop an Octave:reducing spatial redundancy in convolutional neural networks with octave convolution[EB/OL].[2019-09-10]. https://arxiv.org/pdf/1904.05049.pdf. [18] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [19] LITJENS G,BANDI P,EHTESHAMI BEJNORDI B,et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients:the CAMELYON dataset[J]. GigaScience, 2018, 7(6):1-8. [20] SMITH L N. A disciplined approach to neural network hyper-parameters:part 1-learning rate,batch size,momentum,and weight decay[EB/OL].[2019-09-10]. https://arxiv.org/pdf/1803.09820.pdf. [21] FRANKLE J,CARBIN M. The lottery ticket hypothesis:finding sparse, trainable neural networks[EB/OL].[2019-09-10]. https://arxiv.org/pdf/1803.03635.pdf. |