[1] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297. [2] HASSOUN M H,INTRATOR N,MCKAY S,et al. Fundamentals of artificial neural networks[J]. Computers in Physics,1998,10(2):137-137. [3] OZCIFT A. SVM feature selection based rotation forest ensemble classifiers to improvecomputer-aided diagnosis of Parkinson disease[J]. Journal of Medical Systems,2012,36(4):2141-2147. [4] 吴辰文, 李长生, 王伟, 等. 一种改进的SVM算法在乳腺癌诊断方面的应用[J]. 计算机工程与科学,2017,39(3):562-566. (WU C W,LI C S,WANG W,et al. Application of an improved support vector machine algorithm in the diagnosis of breast cancer[J]. Computer Engineering and Science,2017,39(3):562-566.) [5] 张秋余, 竭洋, 李凯. 基于模糊支持向量机与决策树的文本分类器[J]. 计算机应用,2008,28(12):3227-3230.(ZHANG Q Y, JIE Y,LI K. Text classifier based on fuzzy support vector machine and decision tree[J]. Journal of Computer Applications,2008, 28(12):3227-3230.) [6] LEE Y C. Application of support vector machines to corporate credit rating prediction[J]. Expert Systems with Applications, 2007,33(1):67-74. [7] JAYADEVA,KHEMCHANDANI R,CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910. [8] MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006, 28(1):69-74. [9] TANVEER M. Robust and sparse linear programming twin support vector machines[J]. Cognitive Computation, 2015, 7(1):137-149. [10] WANG C,YE Q,LUO P,et al. Robust capped L1-norm twin support vector machine[J]. Neural Networks,2019,114:47-59. [11] 刘雨桐, 李志清, 杨晓玲. 改进卷积神经网络在遥感图像分类中的应用[J]. 计算机应用,2018,38(4):949-954.(LIU Y T, LI Z Q,YANG X L. Application of improved convolution neural network in remote sensing image classification[J]. Journal of Computer Applications,2018,38(4):949-954.) [12] LIAO R J,ZHENG H B,GRZYBOWSKI S,et al. A multiclass SVM-based classifier for transformer fault diagnosis using a particle swarm optimizer with time-varying acceleration coefficients[J]. International Transactions on Electrical Energy Systems, 2013,23(2):181-190. [13] 施建宇, 潘泉, 张绍武, 等. 基于支持向量机融合网络的蛋白质折叠子识别研究[J]. 生物化学与生物物理进展,2006,33(2):155-162.(SHI J Y,PAN Q,ZHANG S W,et al. Protein fold recognition with support vector machines fusion network[J]. Progress in Biochemistry and Biophysics, 2006, 33(2):155-162.) [14] YANG Z,SHAO Y,ZHANG X. Multiple birth support vector machine for multi-class classification[J]. Neural Computing and Applications,2013,22(S1):153-161. [15] XU G,CAO Z,HU B,et al. Robust support vector machines based on the rescaled hinge loss function[J]. Pattern Recognition, 2017,63:139-148. [16] SINGH A,POKHAREL R,PRINCIPE J. The C-loss function for pattern classification[J]. Pattern Recognition,2014,47(1):441-453. [17] WU Y, LIU Y. Robust truncated hinge loss support vector machines[J]. Journal of the American Statistical Association, 2007,102(479):974-983. [18] VAN GESTEL T, SUYKENS J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning,2004,54(1):5-32. [19] BOYD S, VANDENBERGHE L, FAYBUSOVICH L. Convex optimization[J]. IEEE Transactions on Automatic Control,2006, 51(11):1859-1859. [20] BRAGA I,DO CARMO L P,BENATTI C C,et al. A note on parameter selection for support vector machines[C]//Proceedings of the 12th Mexican International Conference on Artificial Intelligence,LNCS 8266. Berlin:Springer,2013:233-244. |