[1] FENG X, LI Q, ZHU Y, et al. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation[J]. Atmospheric Environment,2015,107:118-128. [2] BAKLANOV A,MESTAYER P G,CLAPPIER A,et al. Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description[J]. Atmospheric Chemistry and Physics,2008,8(3):523-543. [3] STERN R,BUILTJES P,SCHAAP M,et al. A model intercomparison study focussing on episodes with elevated PM10 concentrations[J]. Atmospheric Environment,2008,42(19):4567-4588. [4] 董婷, 赵俭辉, 胡勇. 基于时空优化深度神经网络的AQI等级预测[J]. 计算机工程与应用,2017,53(21):17-23,41.(DONG T,ZHAO J H,HU Y. AQI levels prediction based on deep neural network with spatial and temporal optimizations[J]. Computer Engineering and Applications,2017,53(21):17-23,41.) [5] HSIEH H P,LIN S D,ZHENG Y,et al. Inferring air quality for station location recommendation based on urban big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:437-446. [6] 张春露, 白艳萍. 基于TensorFlow的LSTM模型在太原空气质量AQI指数预测中的应用[J]. 重庆理工大学学报(自然科学版), 2018,32(8):137-141.(ZHANG C L,BAI Y P. Application of LSTM prediction model based on TensorFlow in Taiyuan air quality AQI index[J]. Journal of Chongqing University of Technology (Natural Science),2018,32(8):137-141.) [7] LI X,PENG L,YAO X,et al. Long short-term memory neural network for air pollutant concentration predictions:method development and evaluation[J]. Environmental Pollution,2017, 231(Pt 1):997-1004. [8] QI Z,WANG T,SONG G,et al. Deep air learning:interpolation, prediction,and feature analysis of fine-grained air quality[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2285-2297. [9] HUANG C J,KUO P H. A deep CNN-LSTM model for particulate matter(PM2.5)forecasting in smart cities[J]. Sensors,2018,18(7):No. 2220. [10] COLEY C W,JIN W,ROGERS L,et al. A graph-convolutional neural network model for the prediction of chemical reactivity[J]. Chemical Science,2019,10(2):370-377. [11] ZHANG J,ZHENG Y,QI D,et al. DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM,2016:No. 92. [12] 刘华军, 杨骞. 环境污染、时空依赖与经济增长[J]. 产业经济研究,2014(1):81-91. (LIU H J,YANG Q. Environmental pollution,temporal-spatial dependence,and economic growth[J]. Industrial Economics Research,2014(1):81-91.) [13] ZHANG J,ZHENG Y,QI D,et al. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:1655-1661. [14] QI Y, LI Q, KARIMIAN H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of the Total Environment,2019,664:1-10. [15] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用,2018,38(S2):1-6,26.(YANG L,WU Y X,WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications,2018,38(S2):1-6,26.) [16] 于家斌, 尚方方, 王小艺, 等. 基于遗传算法改进的一阶滞后滤波和长短期记忆网络的蓝藻水华预测方法[J]. 计算机应用, 2018,38(7):2119-2123,2135.(YU J B,SHANG F F,WANG X Y,et al. Cyanobacterial bloom forecast method based on genetic algorithm-first order lag filter and long short-term memory network[J]. Journal of Computer Applications,2018,38(7):2119-2123,2135.) [17] ESPOSITO E,DE VITO S,SALVATO M,et al. Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems[J]. Sensors and Actuators,B:Chemical,2016,231:701-713. [18] GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232. [19] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research,2010,11:3371-3408. [20] 胡世前, 姜倩雯, 凌冰, 等. 基于改进支持向量机的空气质量监测预警模型[J]. 江苏大学学报(自然科学版),2016,37(4):491-496.(HU S Q,JIANG Q W,LING B,et al. Monitoring and early warning of air quality based on improved support vector machines[J]. Journal of Jiangsu University (Natural Science Edition),2016,37(4):491-496.) [21] KANG Z,QU Z. Application of BP neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in Lanzhou[C]//Proceedings of the 2nd IEEE International Conference on Computational Intelligence and Applications. Piscataway:IEEE,2017:155-160. |