[1] TABERNIK D,ŠELA S,SKVARČ J,et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing,2019,31(3):759-776. [2] TRUONG M T N,KIM S. Automatic image thresholding using Otsu's method and entropy weighting scheme for surface defect detection[J]. Soft Computing,2018,22(13):4197-4203. [3] FEKRI-ERSHAD S,TAJERIPOUR F. Multi-resolution and noiseresistant surface defect detection approach using new version of local binary patterns[J]. Applied Artificial Intelligence,2017,31(5/6):395-410. [4] BULNES F G,USAMENTIAGA R,GARCIA D F,et al. An efficient method for defect detection during the manufacturing of web materials[J]. Journal of Intelligent Manufacturing,2016,27(2):431-445. [5] 胡浩, 李俊峰, 沈军民. 基于机器视觉的小磁瓦表面微缺陷检测方法研究[J]. 机电工程,2019,36(2):117-123,184.(HU H,LI J F,SHEN J M. Detection methods for surface micro defection on small magnetic tile based on machine vision[J]. Journal of Mechanical and Electrical Engineering, 2019, 36(2):117-123,184.) [6] 刘国平, 常震, 胡瑢华. 磁瓦表面图像的下包络线灰度对比度缺陷检测算法[J]. 机械科学与技术,2017,36(2):269-272.(LIU G P,CHANG Z,HU R H. Defect extraction on magnetic tile surfaces based on lower envelope gray-scale contrast[J]. Mechanical Science and Technology for Aerospace Engineering, 2017,36(2):269-272.) [7] 李雪琴, 蒋红海, 刘培勇, 等. 非下采样Contourlet域自适应阈值面的磁瓦表面缺陷检测[J]. 计算机辅助设计与图形学学报, 2014,26(4):553-558.(LI X Q,JIANG H H,LIU P Y,et al. Defect detection on magnetic tile surface based on adaptive threshold surfaces in NSCT domain[J]. Journal of Computer-Aided Design and Computer Graphics,2014,26(4):553-558.) [8] 林丽君, 殷鹰, 李雪琴, 等. 基于轮廓波包变换的磁瓦表面缺陷提取[J]. 应用基础与工程科学学报,2016,24(2):402-417. (LIN L J,YIN Y,LI X Q,et al. Defect extraction on magnetic tile surface based on contourlet packet transform[J]. Journal of Basics Science and Engineering,2016,24(2):402-417.) [9] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [10] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-03-14]. https://arxiv.org/pdf/1409.1556.pdf. [12] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [13] ZHANG H,CISSE M,DAUPHIN Y N,et al. mixup:Beyond empirical risk minimization[EB/OL].[2020-03-14]. https://arxiv.org/pdf/1710.09412.pdf. [14] 康鑫, 孙晓刚, 万磊. 复杂场景下的水表示数检测与识别[J]. 计算机应用,2019,39(S2):63-67.(KANG X,SUN X G,WAN L. Watermeter representation number detection and recognition in complex scenes[J]. Journal of Computer Applications,2019,39(S2):63-67.) [15] 邓棋, 雷印杰, 田锋. 用于肺炎图像分类的优化卷积神经网络方法[J]. 计算机应用,2020,40(1):71-76.(DENG Q,LEI Y J,TIAN F. Optimized convolutional neural network method for classification of pneumonia images[J]. Journal of Computer Applications,2020,40(1):71-76.) |