1 |
YADAV S K, KALRA P K. Fault diagnosis of internal combustion engine using empirical mode decomposition[C]// Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis. Piscataway: IEEE, 2009: 40-46. 10.1109/ispa.2009.5297760
|
2 |
GAO S Z, LI T C, ZHANG Y M. Rolling bearing fault diagnosis of PSO-LSSVM based on CEEMD entropy fusion[J]. Transactions of the Canadian Society for Mechanical Engineering, 2020, 44(3): 405-418. 10.1139/tcsme-2019-0114
|
3 |
SHIFAT T A, HUR J W. EEMD assisted supervised learning for the fault diagnosis of BLDC motor using vibration signal[J]. Journal of Mechanical Science and Technology, 2020, 34(10): 3981-3990. 10.1007/s12206-020-2208-7
|
4 |
XIANG J W, ZHONG Y T, GAO H F. Rolling element bearing fault detection using PPCA and spectral kurtosis[J]. Measurement, 2015, 75: 180-191. 10.1016/j.measurement.2015.07.045
|
5 |
ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690. 10.1109/tii.2019.2943898
|
6 |
张弘斌,袁奇,赵柄锡,等. 采用多通道样本和深度卷积神经网络的轴承故障诊断方法[J]. 西安交通大学学报, 2020, 54(8): 58-66. 10.7652/xjtuxb202008008
|
|
ZHANG H B, YUAN Q, ZHAO B X, et al. Bearing fault diagnosis method with multi-channel samples and deep convolutional neural network[J]. Journal of Xi’an Jiaotong University, 2020, 54(8): 58-66. 10.7652/xjtuxb202008008
|
7 |
范宇雪,王江文,梅桂明,等. 基于BI-LSTM的小样本滚动轴承故障诊断方法研究[J]. 噪声与振动控制, 2020, 40(4): 103-108. 10.3969/j.issn.1006-1355.2020.04.019
|
|
FAN Y X, WANG J W, MEI G M, et al. Rolling bearing fault diagnosis method based on BI-LSTM under less samples condition[J]. Noise and Vibration Control, 2020, 40(4): 103-108. 10.3969/j.issn.1006-1355.2020.04.019
|
8 |
HOANG D T, TRAN X T, VAN M, et al. A deep neural network-based feature fusion for bearing fault diagnosis[J]. Sensors, 2021, 21(1): No.244. 10.3390/s21010244
|
9 |
AZAMFAR M, SINGH J, BRAVOIMAZ I, et al. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis[J]. Mechanical Systems and Signal Processing, 2020, 144: No.106861. 10.1016/j.ymssp.2020.106861
|
10 |
TAN W W, SUN Y S, QIU D W, et al. Rolling bearing fault diagnosis based on single gated unite recurrent neural networks[J]. Journal of Physics: Conference Series, 2020, 1601(4): No.042017. 10.1088/1742-6596/1601/4/042017
|
11 |
LIU Z H, MENG X D, WEI H L, et al. A regularized LSTM method for predicting remaining useful life of rolling bearings[J]. International Journal of Automation and Computing, 2021, 18(4): 581-593. 10.1007/s11633-020-1276-6
|
12 |
ZOU P, HOU B C, LEI J, et al. Bearing fault diagnosis method based on EEMD and LSTM[J]. International Journal of Computers, Communications and Control, 2020, 15(1): No.1010. 10.15837/ijccc.2020.1.3780
|
13 |
NIAN G U, PAN H, HE P. Bearing fault diagnosis method based on EMD-CNNs[C]// Proceedings of the 3rd International Conference on Computer Science and Mechanical Automation. Lancaster, PA: DEStech Publications, Inc., 2017: 466-473. 10.12783/dtcse/csma2017/17383
|
14 |
陈伟,陈锦雄,江永全,等. 基于RS-LSTM的滚动轴承故障识别[J]. 中国科技论文, 2018,13(10): 1134-1141. 10.3969/j.issn.2095-2783.2018.10.008
|
|
CHEN W, CHEN J X, JIANG Y Q, et al. Fault identification of rolling bearing based on RS-LSTM[J]. China Sciencepaper, 2018, 13(10): 1134-1141. 10.3969/j.issn.2095-2783.2018.10.008
|
15 |
QIAO M Y, YAN S H, TANG X X, et al. Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads[J]. IEEE Access, 2020, 8: 66257-66269. 10.1109/access.2020.2985617
|
16 |
HAO S J, GE F X, LI Y M, et al. Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks[J]. Measurement, 2020, 159: No.107802. 10.1016/j.measurement.2020.107802
|
17 |
QIU D W, LIU Z C, ZHOU Y Q, et al. Modified bi-directional LSTM neural networks for rolling bearing fault diagnosis[C]// Proceedings of the 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019: 1-6. 10.1109/icc.2019.8761383
|
18 |
XIA M, ZHENG X, IMRAN M, et al. Data-driven prognosis method using hybrid deep recurrent neural network[J]. Applied Soft Computing, 2020, 93: No.106351. 10.1016/j.asoc.2020.106351
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8
|
20 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. 10.1109/tpami.2019.2913372
|
21 |
FU S F, CAI F H, WANG W. Fault diagnosis of photovoltaic array based on SE-ResNet[J]. Journal of Physics: Conference Series, 2020, 1682(1): No.012004. 10.1088/1742-6596/1682/1/012004
|