Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3219-3227.DOI: 10.11772/j.issn.1001-9081.2020121924
• Artificial intelligence • Previous Articles Next Articles
Jianfang CAO1,2(), Minmin YAN1, Yiming JIA1, Xiaodong TIAN1
Received:
2020-12-09
Revised:
2021-07-23
Accepted:
2021-08-03
Online:
2021-03-07
Published:
2021-11-10
Contact:
Jianfang CAO
About author:
CAO Jianfang,born in 1976,Ph. D.,professor. Her research
interests include digital image understanding,big dataSupported by:
通讯作者:
曹建芳
作者简介:
曹建芳(1976—),女,山西忻州人,教授,博士,CCF高级会员,主要研究方向:数字图像理解、大数据基金资助:
CLC Number:
Jianfang CAO, Minmin YAN, Yiming JIA, Xiaodong TIAN. Application of Inception-v3 model integrated with transfer learning in dynasty identification of ancient murals[J]. Journal of Computer Applications, 2021, 41(11): 3219-3227.
曹建芳, 闫敏敏, 贾一鸣, 田晓东. 融合迁移学习的Inception-v3模型在古壁画朝代识别中的应用[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3219-3227.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121924
type | patch size/stride | input size |
---|---|---|
conv | 3×3/2 | 299×299×3 |
conv | 3×3/1 | 149×149×32 |
conv | 3×3/1 | 147×147×32 |
pool | 3×3/2 | 147×147×64 |
conv | 3×3/1 | 73×73×64 |
conv | 3×3/2 | 71×71×80 |
conv | 3×3/1 | 35×35×192 |
3×Inception | — | 35×35×288 |
5×Inception | — | 17×17×768 |
2×Inception | — | 8×8×1 280 |
pool | 8×8 | 8×8×2 048 |
linear | logits | 1×1×2 048 |
Softmax | classifier | 1×1×1 000 |
Tab. 1 Inception-v3 model network structure
type | patch size/stride | input size |
---|---|---|
conv | 3×3/2 | 299×299×3 |
conv | 3×3/1 | 149×149×32 |
conv | 3×3/1 | 147×147×32 |
pool | 3×3/2 | 147×147×64 |
conv | 3×3/1 | 73×73×64 |
conv | 3×3/2 | 71×71×80 |
conv | 3×3/1 | 35×35×192 |
3×Inception | — | 35×35×288 |
5×Inception | — | 17×17×768 |
2×Inception | — | 8×8×1 280 |
pool | 8×8 | 8×8×2 048 |
linear | logits | 1×1×2 048 |
Softmax | classifier | 1×1×1 000 |
朝代种类 | 样本 总数 | 训练集 样本数 | 验证集 样本数 | 测试集 样本数 |
---|---|---|---|---|
石器时代 | 840 | 672 | 84 | 84 |
秦汉时期 | 1 560 | 1 248 | 156 | 156 |
隋唐时期 | 1 860 | 1 488 | 186 | 186 |
宋金时期 | 1 280 | 1 024 | 128 | 128 |
魏晋时期 | 2 180 | 1 744 | 218 | 218 |
明清时期 | 1 980 | 1 584 | 198 | 198 |
Tab. 2 Numbers of mural images of different dynasties
朝代种类 | 样本 总数 | 训练集 样本数 | 验证集 样本数 | 测试集 样本数 |
---|---|---|---|---|
石器时代 | 840 | 672 | 84 | 84 |
秦汉时期 | 1 560 | 1 248 | 156 | 156 |
隋唐时期 | 1 860 | 1 488 | 186 | 186 |
宋金时期 | 1 280 | 1 024 | 128 | 128 |
魏晋时期 | 2 180 | 1 744 | 218 | 218 |
明清时期 | 1 980 | 1 584 | 198 | 198 |
序号 | 学习率 | 准确率/% |
---|---|---|
1 | 0.001 | 78.62 |
2 | 0.01 | 84.44 |
3 | 0.1 | 88.70 |
Tab. 3 Comparison of accuracy at different learning rates
序号 | 学习率 | 准确率/% |
---|---|---|
1 | 0.001 | 78.62 |
2 | 0.01 | 84.44 |
3 | 0.1 | 88.70 |
调整情况 | 准确率 |
---|---|
原图 | 96.35 |
增加灰度值 | 38.76 |
增加饱和度 | 92.57 |
反色变换 | 69.48 |
Tab. 4 Comparison of dynasty identification accuracy of mural images with different color features
调整情况 | 准确率 |
---|---|
原图 | 96.35 |
增加灰度值 | 38.76 |
增加饱和度 | 92.57 |
反色变换 | 69.48 |
分辨率 | 准确率/% |
---|---|
299×299 | 96.35 |
897×897 | 90.38 |
1 495×1 495 | 87.64 |
Tab. 5 Comparison of dynasty identification accuracy of mural images with different resolutions
分辨率 | 准确率/% |
---|---|
299×299 | 96.35 |
897×897 | 90.38 |
1 495×1 495 | 87.64 |
模型 | 运行时间/h | 准确率/% |
---|---|---|
AlexNet | 2.5 | 78.34 |
ResNet | 4.2 | 69.56 |
VGGNet | 5.0 | 76.48 |
LeNet-5 | 1.7 | 82.98 |
Alex-10 | 2.8 | 75.05 |
R-VGGNet | 5.1 | 78.66 |
AlexNet-S6 | 3.0 | 79.04 |
本文模型 | 1.5 | 88.70 |
Tab. 6 Comparison of running time and accuracy of different models
模型 | 运行时间/h | 准确率/% |
---|---|---|
AlexNet | 2.5 | 78.34 |
ResNet | 4.2 | 69.56 |
VGGNet | 5.0 | 76.48 |
LeNet-5 | 1.7 | 82.98 |
Alex-10 | 2.8 | 75.05 |
R-VGGNet | 5.1 | 78.66 |
AlexNet-S6 | 3.0 | 79.04 |
本文模型 | 1.5 | 88.70 |
模型 | 石器 时代 | 秦汉 时期 | 隋唐 时期 | 宋金 时期 | 魏晋 时期 | 明清 时期 |
---|---|---|---|---|---|---|
AlexNet-10 | 91.23 | 69.36 | 69.43 | 68.86 | 83.32 | 70.46 |
AlexNet-S6 | 90.45 | 69.70 | 75.54 | 74.50 | 88.53 | 72.45 |
LeNet-5 | 91.57 | 73.76 | 71.87 | 84.12 | 89.60 | 87.60 |
R-VGGNet | 89.95 | 74.21 | 75.58 | 69.80 | 85.65 | 78.39 |
本文模型 | 98.69 | 84.47 | 84.56 | 83.80 | 93.32 | 83.89 |
Tab. 7 Identification accuracy comparison of different models to each dynasty category
模型 | 石器 时代 | 秦汉 时期 | 隋唐 时期 | 宋金 时期 | 魏晋 时期 | 明清 时期 |
---|---|---|---|---|---|---|
AlexNet-10 | 91.23 | 69.36 | 69.43 | 68.86 | 83.32 | 70.46 |
AlexNet-S6 | 90.45 | 69.70 | 75.54 | 74.50 | 88.53 | 72.45 |
LeNet-5 | 91.57 | 73.76 | 71.87 | 84.12 | 89.60 | 87.60 |
R-VGGNet | 89.95 | 74.21 | 75.58 | 69.80 | 85.65 | 78.39 |
本文模型 | 98.69 | 84.47 | 84.56 | 83.80 | 93.32 | 83.89 |
1 | 王可,王慧琴,殷颖,等.基于光谱重建技术的壁画颜色复原与评价[J].激光技术,2019,43(2):280-285. 10.7510/jgjs.issn.1001-3806.2019.02.024 |
WANG K, WANG H Q, YIN Y, et al. Reproduction and evaluation of mural color based on spectral reconstruction technology [J]. Laser Technology, 2019, 43(2): 280-285. 10.7510/jgjs.issn.1001-3806.2019.02.024 | |
2 | 潘云鹏,鲁东明.古代敦煌壁画的数字化保护与修复[J].系统仿真学报,2003,15(3):310-314. 10.3969/j.issn.1004-731X.2003.03.003 |
PAN Y P, LU D M. Digital protection and restoration of Dunhuang mural [J]. Journal of System Simulation, 2003, 15(3): 310-314. 10.3969/j.issn.1004-731X.2003.03.003 | |
3 | ZENG Y, GONG Y. Nearest neighbor based digital restoration of damaged ancient Chinese paintings [C]// Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing. Piscataway: IEEE, 2018: 1-5. 10.1109/icdsp.2018.8631553 |
4 | WANG H, LI Q Q, ZOU Q. Inpainting of Dunhuang murals by sparsely modeling the texture similarity and structure continuity [J]. Journal on Computing and Cultural Heritage, 2019, 12(3): Article No.17. 10.1145/3280790 |
5 | 唐大伟,鲁东明,许端清,等.壁画图像分类中的分组多实例学习方法[J].中国图象图形学报,2014,19(5):708-715. 10.11834/jig.20140508 |
TANG D W, LU D M, XU D Q, et al. Clustered multiple instance learning for mural image classification [J]. Journal of Image and Graphics, 2014, 19(5): 708-715. 10.11834/jig.20140508 | |
6 | 王琦.古代壁画的语义检索技术及应用研究[D].杭州:浙江大学,2011:71-84. |
WANG Q. Semantic retrieval technology and applications for ancient murals [D]. Hangzhou: Zhejiang University, 2011: 71-84. | |
7 | 唐大伟,鲁东明,杨冰,等.轮廓整体结构约束的壁画图像相似性度量[J].中国图象图形学报,2013,18(8):968-975. 10.11834/jig.20130811 |
TANG D W, LU D M, YANG B, et al. Similarity metrics between mural images with constraints of the overall structure of contours [J]. Journal of Image and Graphics, 2013, 18(8): 968-975. 10.11834/jig.20130811 | |
8 | ZHOU L J, LI Q W, HUO G Y, et al. Image classification using biomimetic pattern recognition with convolutional neural networks features [J]. Computational Intelligence and Neuroscience, 2017, 2017: Article No.3792805. 10.1155/2017/3792805 |
9 | TANG P, WANG X G, SHI B G, et al. Deep FisherNet for image classification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2244-2250. 10.1109/tnnls.2018.2874657 |
10 | 郝占龙,罗晓曙,赵书林.基于同层多尺度核CNN的单细胞图像分类[J].计算机工程与应用,2018,54(15):181-184. 10.3778/j.issn.1002-8331.1704-0294 |
HAO Z L, LUO X S, ZHAO S L. Single cell image classification based on same layer multi scale kernel CNN [J]. Computer Engineering and Applications, 2018, 54(15): 181-184. 10.3778/j.issn.1002-8331.1704-0294 | |
11 | LI Q Q, ZOU Q, MA D, et al. Dating ancient paintings of Mogao Grottoes using deeply, learnt visual codes [J]. Science China Information Sciences, 2018, 61(9): Article No.092105. 10.1007/s11432-017-9308-x |
12 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
13 | 石祥滨,房雪键,张德园,等.基于深度学习混合模型迁移学习的图像分类[J].系统仿真学报,2016,28(1):167-173,182. 10.1016/j.neucom.2016.01.074 |
SHI X B, PANG X J, ZHANG D Y, et al. Image classification based on mixed deep learning model transfer learning [J]. Journal of System Simulation, 2016, 28(1): 167-173, 182. 10.1016/j.neucom.2016.01.074 | |
14 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for largescale image recognition [EB/OL]. (2015-04-10) [2020-04-10]. . |
16 | 张荣梅,张琦,陈彬.基于改进LeNet-5的车牌识别算法[J].科学技术与工程,2020,20(12):4775-4779. 10.3969/j.issn.1671-1815.2020.12.024 |
ZHANG R M, ZHANG Q, CHEN B. An improved license plate recognition algorithm based on LeNet-5 convolutional neural network [J]. Science Technology and Engineering, 2020, 20(12): 4775-4779. 10.3969/j.issn.1671-1815.2020.12.024 | |
17 | XIAO L S, YAN Q, DENG S Y. Scene classification with improved AlexNet model [C]// Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering. Piscataway: IEEE, 2017: 1-6. 10.1109/iske.2017.8258820 |
18 | 徐志京,汪毅.青光眼眼底图像的迁移学习分类方法[J].计算机工程与应用,2021,57(3):144-149. 10.1007/978-3-030-87000-3_14 |
XU Z J, WANG Y. Glaucoma fundus images classification method based on transfer learning [J]. Computer Engineering and Applications, 2021, 57(3): 144-149. 10.1007/978-3-030-87000-3_14 | |
19 | 钟志权,袁进.唐晓颖.基于卷积神经网络的左右眼识别[J].计算机研究与发展,2018,55(8):1667-1673. 10.7544/issn1000-1239.2018.20180215 |
ZHONG Z Q, YUAN J, TANG X Y. Left-vs-right eye discrimination based on convolutional neural network [J]. Journal of Computer Research and Development, 2018, 55(8): 1667-1673. 10.7544/issn1000-1239.2018.20180215 |
[1] | CHEN Zhengtao, HUANG Can, YANG Bo, ZHAO Li, LIAO Yong. Yak face recognition algorithm of parallel convolutional neural network based on transfer learning [J]. Journal of Computer Applications, 2021, 41(5): 1332-1336. |
[2] | WANG Jinkai, JIA Xu. Vein recognition algorithm based on Siamese nonnegative matrix factorization with transferability [J]. Journal of Computer Applications, 2021, 41(3): 898-903. |
[3] | Jin ZHAO, Wen’ai SONG, Jun TAI, Jijiang YANG, Qing WANG, Xiaodan LI, Yi LEI, Yue QIU. Review of computer-aided face diagnosis for obstructive sleep apnea in children [J]. Journal of Computer Applications, 2021, 41(11): 3394-3401. |
[4] | Xiaolong LIU, Shitong WANG. Open set fuzzy domain adaptation algorithm via progressive separation [J]. Journal of Computer Applications, 2021, 41(11): 3127-3131. |
[5] | HUANG Xueyu, XU Haote, TAO Jianwen. Multi-source adaptation classification framework with feature selection [J]. Journal of Computer Applications, 2020, 40(9): 2499-2506. |
[6] | ZHANG Chenxi, TANG Shu, TANG Ke. Strategies of parameter fault detection for rocket engines based on transfer learning [J]. Journal of Computer Applications, 2020, 40(9): 2774-2780. |
[7] | BAI Ruyi, GUO Xiaoying, JIA Chunhua. Sentiment prediction of small sample abstract painting image based on feature fusion [J]. Journal of Computer Applications, 2020, 40(8): 2207-2213. |
[8] | MA Jinlin, WEI Meng, MA Ziping. Pulmonary nodule segmentation method based on deep transfer learning [J]. Journal of Computer Applications, 2020, 40(7): 2117-2125. |
[9] | XIAO He, LIU Zhiqin, WANG Qingfeng, HUANG Jun, ZHOU Ying, LIU Qiyu, XU Weiyun. Mass and calcification classification method in mammogram based on multi-view transfer learning [J]. Journal of Computer Applications, 2020, 40(5): 1460-1464. |
[10] | CHEN Jie, ZHANG Ting, DU Yi. Reconstruction of porous media using adaptive deep transfer learning [J]. Journal of Computer Applications, 2020, 40(4): 1231-1236. |
[11] | CHEN Guihui, YI Xin, LI Zhongbing, QIAN Jiren, CHEN Wu. Third-party construction target detection in aerial images of pipeline inspection based on improved YOLOv2 and transfer learning [J]. Journal of Computer Applications, 2020, 40(4): 1062-1068. |
[12] | ZHENG Zongsheng, HU Chenyu, JIANG Xiaoyi. Deep transfer adaptation network based on improved maximum mean discrepancy algorithm [J]. Journal of Computer Applications, 2020, 40(11): 3107-3112. |
[13] | MAO Wentao, YANG Chao, LIU Yamin, TIAN Siyu. Deep domain adaptation model with multi-scale residual attention for incipient fault detection of bearings [J]. Journal of Computer Applications, 2020, 40(10): 2890-2898. |
[14] | WU Kuan, QIN Pinle, CHAI Rui, ZENG Jianchao. Benign and malignant diagnosis of thyroid nodules based on different ultrasound imaging [J]. Journal of Computer Applications, 2020, 40(1): 77-82. |
[15] | LI Minze, LI Xiaoxia, WANG Xueyuan, SUN Wei. Real-time facial expression recognition based on convolutional neural network with multi-scale kernel feature [J]. Journal of Computer Applications, 2019, 39(9): 2568-2574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||