Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 419-425.DOI: 10.11772/j.issn.1001-9081.2021071184
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Jie MENG1, Li WANG1(), Yanjie YANG1, Biao LIAN2
Received:
2021-07-09
Revised:
2021-07-18
Accepted:
2021-07-21
Online:
2022-02-11
Published:
2022-02-10
Contact:
Li WANG
About author:
MENG Jie, born in 1994, M. S. candidate. His research interests include natural language processing, false information detection.Supported by:
通讯作者:
王莉
作者简介:
孟杰(1994—),男,山西长治人,硕士研究生,主要研究方向:自然语言处理、虚假信息检测;基金资助:
CLC Number:
Jie MENG, Li WANG, Yanjie YANG, Biao LIAN. Multi-modal deep fusion for false information detection[J]. Journal of Computer Applications, 2022, 42(2): 419-425.
孟杰, 王莉, 杨延杰, 廉飚. 基于多模态深度融合的虚假信息检测[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 419-425.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071184
数据集 | 虚假信息数 | 真实信息数 | 图片数 |
---|---|---|---|
4 749 | 4 779 | 9 528 | |
CCF竞赛 | 4 324 | 5 521 | 9 845 |
Tab. 1 Dataset statistics
数据集 | 虚假信息数 | 真实信息数 | 图片数 |
---|---|---|---|
4 749 | 4 779 | 9 528 | |
CCF竞赛 | 4 324 | 5 521 | 9 845 |
数据集 | 基准模型 | 准确率 | 虚假信息 | 真实信息 | ||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | |||
CCF竞赛 | Text | 0.613 | 0.664 | 0.532 | 0.538 | 0.601 | 0.66 | 0.659 |
Visual | 0.571 | 0.517 | 0.712 | 0.599 | 0.659 | 0.455 | 0.539 | |
VQA | 0.715 | 0.814 | 0.622 | 0.706 | 0.636 | 0.832 | 0.719 | |
NeuralTalk | 0.681 | 0.733 | 0.661 | 0.695 | 0.634 | 0.674 | 0.633 | |
att-RNN | 0.739 | 0.788 | 0.651 | 0.712 | 0.682 | 0.805 | 0.741 | |
EANN | 0.766 | 0.812 | 0.623 | 0.705 | 0.741 | 0.822 | 0.806 | |
MVAE | 0.774 | 0.808 | 0.736 | 0.771 | 0.743 | 0.814 | 0.777 | |
MMDF | 0.793 | 0.821 | 0.689 | 0.779 | 0.776 | 0.877 | 0.823 | |
Text | 0.643 | 0.662 | 0.578 | 0.617 | 0.609 | 0.685 | 0.647 | |
Visual | 0.608 | 0.610 | 0.605 | 0.607 | 0.607 | 0.611 | 0.609 | |
VQA | 0.736 | 0.797 | 0.634 | 0.706 | 0.695 | 0.838 | 0.760 | |
NeuralTalk | 0.726 | 0.794 | 0.713 | 0.692 | 0.684 | 0.840 | 0.754 | |
att-RNN | 0.772 | 0.854 | 0.656 | 0.742 | 0.72 | 0.889 | 0.795 | |
EANN | 0.793 | 0.796 | 0.806 | 0.801 | 0.790 | 0.780 | 0.785 | |
MVAE | 0.814 | 0.765 | 0.874 | 0.833 | 0.863 | 0.734 | 0.775 | |
MMDF | 0.838 | 0.815 | 0.886 | 0.849 | 0.866 | 0.786 | 0.824 |
Tab. 2 Experimental results on two datasets
数据集 | 基准模型 | 准确率 | 虚假信息 | 真实信息 | ||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | |||
CCF竞赛 | Text | 0.613 | 0.664 | 0.532 | 0.538 | 0.601 | 0.66 | 0.659 |
Visual | 0.571 | 0.517 | 0.712 | 0.599 | 0.659 | 0.455 | 0.539 | |
VQA | 0.715 | 0.814 | 0.622 | 0.706 | 0.636 | 0.832 | 0.719 | |
NeuralTalk | 0.681 | 0.733 | 0.661 | 0.695 | 0.634 | 0.674 | 0.633 | |
att-RNN | 0.739 | 0.788 | 0.651 | 0.712 | 0.682 | 0.805 | 0.741 | |
EANN | 0.766 | 0.812 | 0.623 | 0.705 | 0.741 | 0.822 | 0.806 | |
MVAE | 0.774 | 0.808 | 0.736 | 0.771 | 0.743 | 0.814 | 0.777 | |
MMDF | 0.793 | 0.821 | 0.689 | 0.779 | 0.776 | 0.877 | 0.823 | |
Text | 0.643 | 0.662 | 0.578 | 0.617 | 0.609 | 0.685 | 0.647 | |
Visual | 0.608 | 0.610 | 0.605 | 0.607 | 0.607 | 0.611 | 0.609 | |
VQA | 0.736 | 0.797 | 0.634 | 0.706 | 0.695 | 0.838 | 0.760 | |
NeuralTalk | 0.726 | 0.794 | 0.713 | 0.692 | 0.684 | 0.840 | 0.754 | |
att-RNN | 0.772 | 0.854 | 0.656 | 0.742 | 0.72 | 0.889 | 0.795 | |
EANN | 0.793 | 0.796 | 0.806 | 0.801 | 0.790 | 0.780 | 0.785 | |
MVAE | 0.814 | 0.765 | 0.874 | 0.833 | 0.863 | 0.734 | 0.775 | |
MMDF | 0.838 | 0.815 | 0.886 | 0.849 | 0.866 | 0.786 | 0.824 |
对比模型 | CCF竞赛 | |
---|---|---|
MMDF和MVAE | t=9.016,p=1.721E-5 | t=12.079,p=2.548E-6 |
MMDF和EANN | t=12.961,p=2.398E-6 | t=24.382,p=4.381E-9 |
MMDF和att-RNN | t=18.365,p=1.964E-6 | t=28.896,p=2.333E-8 |
Tab. 3 Comparison results of t-tests of multiple models on two datasets
对比模型 | CCF竞赛 | |
---|---|---|
MMDF和MVAE | t=9.016,p=1.721E-5 | t=12.079,p=2.548E-6 |
MMDF和EANN | t=12.961,p=2.398E-6 | t=24.382,p=4.381E-9 |
MMDF和att-RNN | t=18.365,p=1.964E-6 | t=28.896,p=2.333E-8 |
1 | KOUZY R, JAOUDE J ABI, KRAITEM A, et al. Coronavirus goes viral: quantifying the COVID-19 misinformation epidemic on Twitter[J]. Cureus, 2020, 12(3): No.e7255. 10.7759/cureus.7255 |
2 | RASHKIN H, CHOI E, JANG J Y, et al. Truth of varying shades: analyzing language in fake news and political fact-checking [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 2931-2937. 10.18653/v1/d17-1317 |
3 | POPAT K, MUKHERJEE S, STRÖTGEN J, et al. Credibility assessment of textual claims on the Web [C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM, 2016: 2173-2178. 10.1145/2983323.2983661 |
4 | MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2016: 3818-3824. |
5 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-03-10]. . 10.5244/c.28.6 |
6 | QI P, CAO J, YANG T Y, et al. Exploiting multi-domain visual information for fake news detection [C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 518-527. 10.1109/icdm.2019.00062 |
7 | RUCHANSKY N, SEO S, LIU Y. CSI: a hybrid deep model for fake news detection [C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 797-806. 10.1145/3132847.3132877 |
8 | SHU K, SLIVA A, WANG S H, et al. Fake news detection on social media: a data mining[J]. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22-36. 10.1145/3137597.3137600 |
9 | 毛二松,陈刚,刘欣,等.基于深层特征和集成分类器的微博谣言检测研究[J].计算机应用研究, 2016, 33(11): 3369-3373. 10.3969/j.issn.1001--3695.2016.11.037 |
MAO E S, CHEN G, LIU X, et al. Research on detecting micro-blog rumors based on deep features and ensemble classifier[J]. Application Research of Computers, 2016, 33(11): 3369-3373. 10.3969/j.issn.1001--3695.2016.11.037 | |
10 | 刘政,卫志华,张韧弦.基于卷积神经网络的谣言检测[J].计算机应用, 2017, 37(11): 3053-3056, 3100. 10.11772/j.issn.1001-9081.2017.11.3053 |
LIU Z, WEI Z H, ZHANG R X. Rumor detection based on convolutional neural network[J]. Journal of Computer Applications, 2017, 37(11): 3053-3056, 3100. 10.11772/j.issn.1001-9081.2017.11.3053 | |
11 | MA J, GAO W, WONG K F. Detect rumors on Twitter by promoting information campaigns with generative adversarial learning [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3049-3055. 10.1145/3308558.3313741 |
12 | JIN Z W, CAO J, ZHANG Y D, et al. Novel visual and statistical image features for microblogs news verification[J]. IEEE Transactions on Multimedia, 2017, 19(3): 598-608. 10.1109/tmm.2016.2617078 |
13 | SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection [C]// Proceedings of the IEEE 5th International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47. 10.1109/bigmm.2019.00-44 |
14 | JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs [C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 795-816. 10.1145/3123266.3123454 |
15 | SONG C G, NING N W, ZHANG Y L, et al. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks[J]. Information Processing and Management, 2021, 58(1): No.102437. 10.1016/j.ipm.2020.102437 |
16 | WANG Y Q, MA F L, JIN Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 849-857. 10.1145/3219819.3219903 |
17 | ZHANG H W, FANG Q, QIAN S S, et al. Multi-modal knowledge-aware event memory network for social media rumor detection [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1942-1951. 10.1145/3343031.3350850 |
18 | KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2915-2921. 10.1145/3308558.3313552 |
19 | ZHOU X Y, WU J D, ZAFARANI R. SAFE: similarity-aware multi-modal fake news detection [C]// Proceedings of the 2020 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS12085. Cham: Springer, 2020: 354-367. |
20 | XUE J X, WANG Y B, TIAN Y C, et al. Detecting fake news by exploring the consistency of multimodal data[J]. Information Processing and Management, 2021, 58(5): No.102610. 10.1016/j.ipm.2021.102610 |
21 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07) [2021-03-10]. . 10.3126/jiee.v3i1.34327 |
22 | ANTOL S, AGRAWAL A, LU J S, et al. VQA: visual question answering [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2425-2433. 10.1109/iccv.2015.279 |
23 | VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3156-3164. 10.1109/cvpr.2015.7298935 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[10] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[11] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[12] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[13] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[14] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[15] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||