Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3438-3446.DOI: 10.11772/j.issn.1001-9081.2021061056
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Zhenjun PAN, Cheng LIANG(), Huaxiang ZHANG
Received:
2021-05-12
Revised:
2021-07-16
Accepted:
2021-07-26
Online:
2021-12-28
Published:
2021-12-10
Contact:
Cheng LIANG
About author:
PAN Zhenjun, born in 1996, M. S. candidate. Her research interests include machine learning, biomedical big data analysis.Supported by:
通讯作者:
梁成
作者简介:
潘振君(1996—),女,山东潍坊人,硕士研究生,CCF会员,主要研究方向:机器学习、生物医学大数据分析基金资助:
CLC Number:
Zhenjun PAN, Cheng LIANG, Huaxiang ZHANG. Robust multi-view subspace clustering based on consistency graph learning[J]. Journal of Computer Applications, 2021, 41(12): 3438-3446.
潘振君, 梁成, 张化祥. 基于一致图学习的鲁棒多视图子空间聚类[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3438-3446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061056
符号 | 含义 |
---|---|
n | 样本数 |
V | 视图数 |
dv | 第v个视图的特征维数 |
第v个视图的数据矩阵 | |
第v个视图的表示矩阵 | |
第v个视图的误差矩阵 | |
第v个视图的相似度矩阵 | |
一致图 |
Tab. 1 Common symbols and their definitions
符号 | 含义 |
---|---|
n | 样本数 |
V | 视图数 |
dv | 第v个视图的特征维数 |
第v个视图的数据矩阵 | |
第v个视图的表示矩阵 | |
第v个视图的误差矩阵 | |
第v个视图的相似度矩阵 | |
一致图 |
数据集 | 大小 | 视图数 | 类别数 | 特征数 | |||||
---|---|---|---|---|---|---|---|---|---|
v1 | v2 | v3 | v4 | v5 | v6 | ||||
100leaves | 1 600 | 3 | 100 | 64 | 64 | 64 | |||
BBC | 685 | 4 | 5 | 4 659 | 4 633 | 4 665 | 4 684 | ||
NGs | 500 | 3 | 5 | 2 000 | 2 000 | 2 000 | |||
Caltech101-20 | 2 386 | 6 | 20 | 48 | 40 | 254 | 1 984 | 512 | 928 |
COIL20 | 1 440 | 3 | 20 | 512 | 1 239 | 324 | |||
MSRC | 210 | 5 | 7 | 1 302 | 48 | 512 | 256 | 210 |
Tab. 2 Detailed description of six real-world datasets
数据集 | 大小 | 视图数 | 类别数 | 特征数 | |||||
---|---|---|---|---|---|---|---|---|---|
v1 | v2 | v3 | v4 | v5 | v6 | ||||
100leaves | 1 600 | 3 | 100 | 64 | 64 | 64 | |||
BBC | 685 | 4 | 5 | 4 659 | 4 633 | 4 665 | 4 684 | ||
NGs | 500 | 3 | 5 | 2 000 | 2 000 | 2 000 | |||
Caltech101-20 | 2 386 | 6 | 20 | 48 | 40 | 254 | 1 984 | 512 | 928 |
COIL20 | 1 440 | 3 | 20 | 512 | 1 239 | 324 | |||
MSRC | 210 | 5 | 7 | 1 302 | 48 | 512 | 256 | 210 |
算法 | 时间复杂度 |
---|---|
GBS | O(((Vk+Vn+c+cn)n)t+Vnkd) |
Multi-NMF | O(touttinVdnk) |
CoregSC | O(tcn2) |
Cotrain | O(tcn2 +Vnkd) |
MLAN | O(t(cn2+Vn2+n2)+n2) |
GMC | O(((Vk+Vn+c+cn)n)t+Vnkd) |
RMCGL | O(t(Vnk+cn+cn2+Vn2)+Vnkd) |
Tab. 3 Time complexity comparison
算法 | 时间复杂度 |
---|---|
GBS | O(((Vk+Vn+c+cn)n)t+Vnkd) |
Multi-NMF | O(touttinVdnk) |
CoregSC | O(tcn2) |
Cotrain | O(tcn2 +Vnkd) |
MLAN | O(t(cn2+Vn2+n2)+n2) |
GMC | O(((Vk+Vn+c+cn)n)t+Vnkd) |
RMCGL | O(t(Vnk+cn+cn2+Vn2)+Vnkd) |
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 41.71 | 51.02 | 45.73 | 34.58 | 66.18 | 50.38 | 32.57 | 70.33 |
CAN | 50.71 | 40.08 | 26.80 | 44.76 | 76.27 | 42.09 | 36.00 | 27.83 |
K-means | 41.33 | 46.59 | 24.07 | 36.49 | 53.65 | 52.43 | 53.11 | 82.50 |
GBS | 82.44 | 69.34 | 98.20 | 54.27 | 82.99 | 72.86 | 53.50 | 90.00 |
Multi-NMF | 64.54 | 41.49 | 26.32 | 38.01 | 65.96 | 57.32 | 25.50 | 60.50 |
CoregSC | 77.02 | 46.83 | 28.60 | 32.66 | 68.93 | 77.29 | 55.94 | 89.50 |
Cotrain | 78.38 | 63.75 | 67.26 | 40.43 | 77.96 | 75.19 | 53.60 | 89.75 |
MLAN | 87.94 | 69.05 | 96.40 | 53.48 | 81.67 | 73.33 | 56.00 | 90.00 |
GMC | 82.37 | 69.34 | 98.20 | 45.64 | 82.99 | 72.86 | 53.50 | 90.00 |
RMCGL | 88.19 | 72.70 | 98.40 | 60.90 | 83.75 | 78.57 | 59.50 | 90.00 |
Tab. 4 ACC values of different clustering algorithms on different datasets
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 41.71 | 51.02 | 45.73 | 34.58 | 66.18 | 50.38 | 32.57 | 70.33 |
CAN | 50.71 | 40.08 | 26.80 | 44.76 | 76.27 | 42.09 | 36.00 | 27.83 |
K-means | 41.33 | 46.59 | 24.07 | 36.49 | 53.65 | 52.43 | 53.11 | 82.50 |
GBS | 82.44 | 69.34 | 98.20 | 54.27 | 82.99 | 72.86 | 53.50 | 90.00 |
Multi-NMF | 64.54 | 41.49 | 26.32 | 38.01 | 65.96 | 57.32 | 25.50 | 60.50 |
CoregSC | 77.02 | 46.83 | 28.60 | 32.66 | 68.93 | 77.29 | 55.94 | 89.50 |
Cotrain | 78.38 | 63.75 | 67.26 | 40.43 | 77.96 | 75.19 | 53.60 | 89.75 |
MLAN | 87.94 | 69.05 | 96.40 | 53.48 | 81.67 | 73.33 | 56.00 | 90.00 |
GMC | 82.37 | 69.34 | 98.20 | 45.64 | 82.99 | 72.86 | 53.50 | 90.00 |
RMCGL | 88.19 | 72.70 | 98.40 | 60.90 | 83.75 | 78.57 | 59.50 | 90.00 |
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 67.66 | 33.09 | 28.34 | 40.07 | 74.37 | 40.06 | 21.81 | 22.74 |
CAN | 71.63 | 12.15 | 10.07 | 26.78 | 89.75 | 19.72 | 17.91 | 3.19 |
K-means | 67.52 | 27.14 | 4.87 | 42.11 | 69.07 | 41.40 | 42.40 | 38.75 |
GBS | 93.43 | 56.28 | 93.92 | 51.79 | 92.42 | 77.22 | 49.44 | 61.90 |
Multi-NMF | 84.30 | 25.53 | 11.64 | 49.38 | 79.54 | 48.61 | 5.85 | 3.16 |
CoregSC | 92.01 | 24.49 | 8.06 | 50.14 | 82.30 | 67.87 | 40.02 | 57.96 |
Cotrain | 86.96 | 36.00 | 26.93 | 48.98 | 82.20 | 60.59 | 48.99 | 59.27 |
MLAN | 94.41 | 49.08 | 89.18 | 47.13 | 91.18 | 76.74 | 37.87 | 61.00 |
GMC | 92.92 | 56.28 | 93.92 | 48.09 | 92.42 | 77.22 | 49.44 | 61.90 |
RMCGL | 95.47 | 63.34 | 94.44 | 57.77 | 94.33 | 77.54 | 54.91 | 61.90 |
Tab. 5 NMI values of different clustering algorithms on different datasets
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 67.66 | 33.09 | 28.34 | 40.07 | 74.37 | 40.06 | 21.81 | 22.74 |
CAN | 71.63 | 12.15 | 10.07 | 26.78 | 89.75 | 19.72 | 17.91 | 3.19 |
K-means | 67.52 | 27.14 | 4.87 | 42.11 | 69.07 | 41.40 | 42.40 | 38.75 |
GBS | 93.43 | 56.28 | 93.92 | 51.79 | 92.42 | 77.22 | 49.44 | 61.90 |
Multi-NMF | 84.30 | 25.53 | 11.64 | 49.38 | 79.54 | 48.61 | 5.85 | 3.16 |
CoregSC | 92.01 | 24.49 | 8.06 | 50.14 | 82.30 | 67.87 | 40.02 | 57.96 |
Cotrain | 86.96 | 36.00 | 26.93 | 48.98 | 82.20 | 60.59 | 48.99 | 59.27 |
MLAN | 94.41 | 49.08 | 89.18 | 47.13 | 91.18 | 76.74 | 37.87 | 61.00 |
GMC | 92.92 | 56.28 | 93.92 | 48.09 | 92.42 | 77.22 | 49.44 | 61.90 |
RMCGL | 95.47 | 63.34 | 94.44 | 57.77 | 94.33 | 77.54 | 54.91 | 61.90 |
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 45.52 | 59.82 | 49.20 | 68.15 | 68.26 | 52.76 | 35.55 | 70.33 |
CAN | 55.13 | 40.69 | 27.53 | 50.57 | 81.41 | 32.86 | 36.33 | 20.56 |
K-means | 42.90 | 51.50 | 25.19 | 65.79 | 56.33 | 54.19 | 56.76 | 82.50 |
GBS | 57.11 | 47.89 | 95.54 | 64.33 | 82.57 | 61.90 | 53.50 | 90.00 |
Multi-NMF | 68.84 | 45.04 | 27.33 | 68.55 | 68.71 | 59.94 | 26.50 | 60.50 |
CoregSC | 80.33 | 51.29 | 29.40 | 69.02 | 71.46 | 78.50 | 56.39 | 89.50 |
Cotrain | 73.56 | 57.09 | 43.73 | 68.86 | 75.56 | 75.00 | 53.65 | 89.75 |
MLAN | 89.81 | 69.05 | 96.40 | 66.60 | 84.10 | 80.00 | 56.00 | 90.00 |
GMC | 85.06 | 69.34 | 98.20 | 55.49 | 85.00 | 79.52 | 53.50 | 90.00 |
RMCGL | 89.88 | 72.70 | 98.40 | 70.49 | 87.29 | 80.00 | 61.00 | 90.00 |
Tab. 6 Purity values of different clustering algorithms on different datasets
算法 | 100leaves | BBC | NGs | Caltech101-20 | COIL20 | MSRC | synthetic | two Gaussian |
---|---|---|---|---|---|---|---|---|
NMF | 45.52 | 59.82 | 49.20 | 68.15 | 68.26 | 52.76 | 35.55 | 70.33 |
CAN | 55.13 | 40.69 | 27.53 | 50.57 | 81.41 | 32.86 | 36.33 | 20.56 |
K-means | 42.90 | 51.50 | 25.19 | 65.79 | 56.33 | 54.19 | 56.76 | 82.50 |
GBS | 57.11 | 47.89 | 95.54 | 64.33 | 82.57 | 61.90 | 53.50 | 90.00 |
Multi-NMF | 68.84 | 45.04 | 27.33 | 68.55 | 68.71 | 59.94 | 26.50 | 60.50 |
CoregSC | 80.33 | 51.29 | 29.40 | 69.02 | 71.46 | 78.50 | 56.39 | 89.50 |
Cotrain | 73.56 | 57.09 | 43.73 | 68.86 | 75.56 | 75.00 | 53.65 | 89.75 |
MLAN | 89.81 | 69.05 | 96.40 | 66.60 | 84.10 | 80.00 | 56.00 | 90.00 |
GMC | 85.06 | 69.34 | 98.20 | 55.49 | 85.00 | 79.52 | 53.50 | 90.00 |
RMCGL | 89.88 | 72.70 | 98.40 | 70.49 | 87.29 | 80.00 | 61.00 | 90.00 |
算法 | Breast | Colon | GBM | Melanoma |
---|---|---|---|---|
Multi-NMF | 0.516 9 | 0.449 1 | 7.18E-03 | 0.453 6 |
CoregSC | 0.118 9 | 0.570 8 | 0.506 0 | 4.87E-04 |
Cotrain | 0.075 7 | 0.486 0 | 0.021 0 | 0.180 0 |
MLAN | 0.116 5 | 0.719 4 | 5.44E-04 | 1.31E-03 |
GBS | 0.067 9 | 0.843 8 | 4.44E-04 | 0.026 6 |
GMC | 0.108 1 | 0.863 8 | 2.98E-04 | 0.023 1 |
RMCGL | 0.020 7 | 0.033 5 | 1.65E-04 | 3.17E-04 |
Tab. 7 Comparison of empirical p-values on four cancer datasets
算法 | Breast | Colon | GBM | Melanoma |
---|---|---|---|---|
Multi-NMF | 0.516 9 | 0.449 1 | 7.18E-03 | 0.453 6 |
CoregSC | 0.118 9 | 0.570 8 | 0.506 0 | 4.87E-04 |
Cotrain | 0.075 7 | 0.486 0 | 0.021 0 | 0.180 0 |
MLAN | 0.116 5 | 0.719 4 | 5.44E-04 | 1.31E-03 |
GBS | 0.067 9 | 0.843 8 | 4.44E-04 | 0.026 6 |
GMC | 0.108 1 | 0.863 8 | 2.98E-04 | 0.023 1 |
RMCGL | 0.020 7 | 0.033 5 | 1.65E-04 | 3.17E-04 |
算法 | NGs | Caltech101-20 | MSRC | COIL20 |
---|---|---|---|---|
RC | 66.80 | 58.51 | 55.71 | 80.42 |
RL | 96.80 | 57.67 | 57.62 | 80.97 |
RMCGL | 98.40 | 60.90 | 78.57 | 83.75 |
Tab. 8 ACC results of ablation experiments
算法 | NGs | Caltech101-20 | MSRC | COIL20 |
---|---|---|---|---|
RC | 66.80 | 58.51 | 55.71 | 80.42 |
RL | 96.80 | 57.67 | 57.62 | 80.97 |
RMCGL | 98.40 | 60.90 | 78.57 | 83.75 |
0.01 | 0.1 | 1 | 10 | 100 | |
---|---|---|---|---|---|
0.01 | 86.73 | 88.92 | 90.05 | 90.96 | 92.18 |
0.1 | 90.55 | 64.52 | 91.48 | 90.96 | 91.65 |
1 | 90.26 | 92.52 | 91.26 | 92.70 | 91.43 |
10 | 92.13 | 90.50 | 91.65 | 92.87 | 90.43 |
100 | 92.51 | 92.05 | 90.63 | 94.44 | 91.90 |
Tab. 9 Analysis of NMI value of NGs dataset with parameter variation
0.01 | 0.1 | 1 | 10 | 100 | |
---|---|---|---|---|---|
0.01 | 86.73 | 88.92 | 90.05 | 90.96 | 92.18 |
0.1 | 90.55 | 64.52 | 91.48 | 90.96 | 91.65 |
1 | 90.26 | 92.52 | 91.26 | 92.70 | 91.43 |
10 | 92.13 | 90.50 | 91.65 | 92.87 | 90.43 |
100 | 92.51 | 92.05 | 90.63 | 94.44 | 91.90 |
0.01 | 0.1 | 1 | 10 | 100 | |
---|---|---|---|---|---|
0.01 | 93.11 | 92.98 | 92.94 | 93.06 | 94.65 |
0.1 | 92.95 | 94.64 | 92.94 | 93.06 | 93.60 |
1 | 94.41 | 94.45 | 93.55 | 93.10 | 92.55 |
10 | 94.62 | 94.64 | 92.95 | 94.65 | 93.27 |
100 | 92.58 | 92.94 | 92.50 | 92.95 | 93.24 |
Tab. 10 Analysis of NMI value of COIL20 dataset with parameter variation
0.01 | 0.1 | 1 | 10 | 100 | |
---|---|---|---|---|---|
0.01 | 93.11 | 92.98 | 92.94 | 93.06 | 94.65 |
0.1 | 92.95 | 94.64 | 92.94 | 93.06 | 93.60 |
1 | 94.41 | 94.45 | 93.55 | 93.10 | 92.55 |
10 | 94.62 | 94.64 | 92.95 | 94.65 | 93.27 |
100 | 92.58 | 92.94 | 92.50 | 92.95 | 93.24 |
1 | YANG X S, ZHANG T Z, XU C S. Cross domain feature learning in multimedia[J]. IEEE Transactions on Multimedia, 2015, 17(1): 64-78. 10.1109/tmm.2014.2375793 |
2 | ZHANG L, ZHANG D. Visual understanding via multi-feature shared learning with global consistency[J]. IEEE Transactions on Multimedia, 2016, 18(2): 247-259. 10.1109/tmm.2015.2510509 |
3 | KANG C C, XIANG S M, LIAO S C, et al. Learning consistent feature representation for cross-modal multimedia retrieval[J]. IEEE Transactions on Multimedia, 2015, 17(3): 370-381. 10.1109/tmm.2015.2390499 |
4 | DING C X, TAO D C. Robust face recognition via multimodal deep face representation[J]. IEEE Transactions on Multimedia, 2015, 17(11): 2049-2058. 10.1109/tmm.2015.2477042 |
5 | BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]// Proceedings of the 11th Annual Conference on Computational Learning Theory. New York: ACM, 1998: 92-100. 10.1145/279943.279962 |
6 | ZHAO X R, EVANS N, DUGELAY J L. A subspace co-training framework for multi-view clustering[J]. Pattern Recognition Letters, 2014, 41: 73-82. 10.1016/j.patrec.2013.12.003 |
7 | HUANG H C, CHUANG Y Y, CHEN C S. Multiple kernel fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1): 120-134. 10.1109/tfuzz.2011.2170175 |
8 | KANG Z, WEN L J, CHEN W Y, et al. Low-rank kernel learning for graph-based clustering[J]. Knowledge-Based Systems, 2019, 163: 510-517. 10.1016/j.knosys.2018.09.009 |
9 | LIU J, CAO F Y, GAO X Z, et al. A cluster-weighted kernel k-means method for multi-view clustering[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 4860-4867. 10.1609/aaai.v34i04.5922 |
10 | SAHA M. A graph based approach to multiview clustering[C]// Proceedings of the 2013 International Conference on Pattern Recognition and Machine Intelligence, LNCS8251. Berlin: Springer, 2013: 128-133. |
11 | NIE F P, LI J, LI X L. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: IJCAI.org, 2016: 1881-1887. 10.24963/ijcai.2017/357 |
12 | GAO H C, NIE F P, LI X L, et al. Multi-view subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:4238-4246. 10.1109/iccv.2015.482 |
13 | YIN Q Y, WU S, HE R, et al. Multi-view clustering via pairwise sparse subspace representation[J]. Neurocomputing, 2015, 156: 12-21. 10.1016/j.neucom.2015.01.017 |
14 | ZHANG C Q, FU H Z, LIU S, et al. Low-rank tensor constrained multiview subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1582-1590. 10.1109/iccv.2015.185 |
15 | WANG X B, GUO X J, LEI Z, et al. Exclusivity-consistency regularized multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:923-931. 10.1109/cvpr.2017.8 |
16 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 10.1109/tpami.2013.57 |
17 | LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. 10.1109/tpami.2012.88 |
18 | CHEN J H, YANG J. Robust subspace segmentation via low-rank representation[J]. IEEE Transactions on Cybernetics, 2014, 44(8): 1432-1445. 10.1109/tcyb.2013.2286106 |
19 | NIE F P, CAI G H, LI X L. Multi-view clustering and semi-supervised classification with adaptive neighbors[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 2408-2414. |
20 | NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 977-986. 10.1145/2623330.2623726 |
21 | FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations I[J]. Proceedings of the National Academy of Sciences of the United States of America, 1949, 35(11): 652-655. 10.1073/pnas.35.11.652 |
22 | LIN Z C, LIU R S, SU Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2011: 612-620. |
23 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129. 10.1109/tkde.2019.2903810 |
24 | XU N, GUO Y Q, ZHENG X, et al. Partial multi-view subspace clustering[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1794-1801. 10.1145/3240508.3240679 |
25 | XU A D, CHEN J Z, PENG H, et al. Simultaneous interrogation of cancer omics to identify subtypes with significant clinical differences[J]. Frontiers in Genetics, 2019, 10: No.236. 10.3389/fgene.2019.00236 |
26 | WANG Y X, ZHANG Y J. Nonnegative matrix factorization: a comprehensive review[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6): 1336-1353. 10.1109/tkde.2012.51 |
27 | WANG H, YANG Y, LIU B, et al. A study of graph-based system for multi-view clustering[J]. Knowledge-Based Systems, 2019, 163: 1009-1019. 10.1016/j.knosys.2018.10.022 |
28 | LIU J L, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization[C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 252-260. 10.1137/1.9781611972832.28 |
29 | KUMAR A, RAI P, DAUMÉ H III. Co-regularized multi-view spectral clustering[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2011: 1413-1421. |
30 | KUMAR A, DAUMÉ H III. A co-training approach for multi-view spectral clustering[C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 393-400. |
31 | RAPPOPORT N, SHAMIR R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark[J]. Nucleic Acids Research, 2018, 46(20): 10546-10562. 10.1093/nar/gky889 |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[3] | Yao DONG, Yixue FU, Yongfeng DONG, Jin SHI, Chen CHEN. Survey of incomplete multi-view clustering [J]. Journal of Computer Applications, 2024, 44(6): 1673-1682. |
[4] | Xiaoxia JIANG, Ruizhang HUANG, Ruina BAI, Lina REN, Yanping CHEN. Deep event clustering method based on event representation and contrastive learning [J]. Journal of Computer Applications, 2024, 44(6): 1734-1742. |
[5] | Tianyu HUANG, Yuanxing LI, Hao CHEN, Zijia GUO, Mingjun WEI. User cluster partitioning method based on weighted fuzzy clustering in ground-air collaboration scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1555-1561. |
[6] | Tongtong XU, Bin XIE, Chunhao ZHANG, Ximei ZHANG. Multi-order nearest neighbor graph clustering algorithm by fusing transition probability matrix [J]. Journal of Computer Applications, 2024, 44(5): 1527-1538. |
[7] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[8] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[9] | Yu DING, Hanlin ZHANG, Rong LUO, Hua MENG. Fuzzy clustering algorithm based on belief subcluster cutting [J]. Journal of Computer Applications, 2024, 44(4): 1128-1138. |
[10] | Lin SUN, Menghan LIU. K-means clustering based on adaptive cuckoo optimization feature selection [J]. Journal of Computer Applications, 2024, 44(3): 831-841. |
[11] | Long CHEN, Xuanlin YU, Wen CHEN, Yi YAO, Wenjing ZHU, Ying JIA, Denghong LI, Zhi REN. Efficient clustered routing protocol for intelligent road cone ad-hoc networks based on non-random clustering [J]. Journal of Computer Applications, 2024, 44(3): 869-875. |
[12] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
[13] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[14] | Chenghao YANG, Jie HU, Hongjun WANG, Bo PENG. Incomplete multi-view clustering algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(12): 3784-3789. |
[15] | Wei XIONG, Yibo CHEN, Lizhen ZHANG, Qian YANG, Qin ZOU. Self-supervised monocular depth estimation using multi-frame sequence images [J]. Journal of Computer Applications, 2024, 44(12): 3907-3914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||