1.School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China 2.Graduate School, People’s Public Security University of China, Beijing 100038, China
Contact:
LIU Zhao, born in 1981, Ph. D., lecturer. His research interests include machine learning, computer vision.
About author:YUAN Lining, born in 1995, M. S. candidate. His research interests include machine learning, graph neural network;
Supported by:
This work is partially supported by Fundamental Research Funds for the Central Universities (2019JKF425), National Key Research and Development Program of China (2020YFC1522600).
1 BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node classification in social networks[M]// AGGARWAL C. Social Network Data Analytics. Boston: Springer, 2011:115-148. 10.1007/978-1-4419-8462-3_5 2 刘昱阳,李龙杰,单娜,等. 融合聚集系数的链接预测方法[J]. 计算机应用, 2020, 40(1): 28-35. 10.11772/j.issn.1001-9081.2019061008 LIU Y Y, LI L J, SHAN N, et al. Link prediction method fusing clustering coefficients[J]. Journal of Computer Applications, 2020, 40(1): 28-35. 10.11772/j.issn.1001-9081.2019061008 3 尤坊州,白亮. 关键节点选择的快速图聚类算法[J]. 计算机科学与探索, 2021, 15(10): 1930-1937. 10.3778/j.issn.1673-9418.2007004 YOU F Z, BAI L. Fast graph clustering algorithm based on selection of key nodes[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1930-1937. 10.3778/j.issn.1673-9418.2007004 4 LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 10.1038/nature14539 5 GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. 10.1016/j.knosys.2018.03.022 6 刘思,刘海,陈启买,等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8): 2234-2239. 10.11772/j.issn.1001-9081.2017.08.2234 LIU S, LIU H, CHEN Q M, et al. Link prediction algorithm based on network representation learning and random walk[J]. Journal of Computer Applications, 2017, 37(8): 2234-2239. 10.11772/j.issn.1001-9081.2017.08.2234 7 BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4/5): 291-294. 10.1007/bf00332918 8 PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 9 GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 10 HUNG P T, YAMANISHI K. Word2vec skip-gram dimensionality selection via sequential normalized maximum likelihood[J]. Entropy, 2021, 23(8): No.997. 10.3390/e23080997 11 WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 12 LI G H, MüLLER M, QIAN G C, et al. DeepGCNs: making GCNs go as deep as CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(Early Access): 1-1. 10.1109/tpami.2021.3074057 13 LEE Y, HWANG J W, LEE S, et al. An energy and GPU-computation efficient backbone network for real-time object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 752-760. 10.1109/cvprw.2019.00103 14 CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[EB/OL]. (2016-02-22) [2021-12-10].https://arxiv.org/pdf/1511.07289.pdf. 15 PEROZZI B, KULKARNI V, SKIENA S. Walklets: multiscale graph embeddings for interpretable network classification[EB/OL]. (2016-05-06) [2021-12-10].https://arxiv.org/pdf/1605.02115v1.pdf. 10.1145/3110025.3110086 16 WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 17 CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152. 10.1609/aaai.v30i1.10179 18 KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2021-09-15].https://arxiv.org/pdf/1611.07308.pdf. 19 KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01) [2021-11-19].https://arxiv.org/pdf/1312.6114.pdf. 10.1561/2200000056 20 NALLBANI I, AYANZADEH A, KESER R K, et al. Representation learning using graph autoencoders with residual connections[EB/OL]. (2021-05-03) [2021-10-22].https://arxiv.org/pdf/2105.00695.pdf. 21 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 22 XIAO Y, XIAO D, HU B B, et al. ANE: network embedding via adversarial autoencoders[C]// Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2018: 66-73. 10.1109/bigcomp.2018.00019 23 MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL]. (2016-05-25) [2021-12-10].https://arxiv.org/pdf/1511.05644.pdf. 24 HUANG G, LIU Z, MAATEN L van der, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 25 GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. 10.1016/j.patcog.2017.10.013 26 GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323. 27 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-11-08].https://arxiv.org/pdf/1609.02907.pdf. 10.48550/arXiv.1609.02907 28 HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):129-150. 10.1016/j.acha.2010.04.005 29 KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1):79-86. 10.1214/aoms/1177729694 30 SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106. 10.1609/aimag.v29i3.2157 31 SALHA G, HENNEQUIN R, VAZIRGIANNIS M. Keep it simple: graph autoencoders without graph convolutional networks[EB/OL]. (2019-10-02) [2021-12-10].https://arxiv.org/pdf/1910.00942.pdf. 10.1016/j.neunet.2021.04.015 32 VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-10-10].https://arxiv.org/pdf/1710.10903.pdf.