Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3747-3754.DOI: 10.11772/j.issn.1001-9081.2022111750
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Qize REN, Hongjie JIA( ), Dongyu CHEN
), Dongyu CHEN
												  
						
						
						
					
				
Received:2022-11-24
															
							
																	Revised:2023-04-30
															
							
																	Accepted:2023-05-12
															
							
							
																	Online:2023-06-16
															
							
																	Published:2023-12-10
															
							
						Contact:
								Hongjie JIA   
													About author:REN Qize, born in 1997, M. S. candidate. His research interests include large-scale subspace clustering.Supported by:通讯作者:
					贾洪杰
							作者简介:任奇泽(1997—),男,河南许昌人,硕士研究生,主要研究方向:大规模子空间聚类基金资助:CLC Number:
Qize REN, Hongjie JIA, Dongyu CHEN. Large-scale subspace clustering algorithm with Local structure learning[J]. Journal of Computer Applications, 2023, 43(12): 3747-3754.
任奇泽, 贾洪杰, 陈东宇. 融合局部结构学习的大规模子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3747-3754.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111750
| 符号 | 描述 | 
|---|---|
| 数据集,包含n个样本,每个样本具有d个特征 | |
| 采样锚点, 包含m个样本,每个样本具有d个特征 | |
| 相似性矩阵 | |
| 锚点亲和矩阵 | |
| 度矩阵 | |
| 锚点距离矩阵 | |
| Laplacian矩阵 | |
| 样本子矩阵 | |
| U | 特征向量组成的矩阵 | 
| n×1的向量,其中元素全为1 | |
| 2-范数 | |
| Frobenius范数 | |
| 矩阵的迹 | |
| 矩阵对角线构成的对角矩阵 | |
| 正则化函数 | 
Tab. 1 Symbols and their descriptions
| 符号 | 描述 | 
|---|---|
| 数据集,包含n个样本,每个样本具有d个特征 | |
| 采样锚点, 包含m个样本,每个样本具有d个特征 | |
| 相似性矩阵 | |
| 锚点亲和矩阵 | |
| 度矩阵 | |
| 锚点距离矩阵 | |
| Laplacian矩阵 | |
| 样本子矩阵 | |
| U | 特征向量组成的矩阵 | 
| n×1的向量,其中元素全为1 | |
| 2-范数 | |
| Frobenius范数 | |
| 矩阵的迹 | |
| 矩阵对角线构成的对角矩阵 | |
| 正则化函数 | 
| 数据集 | 样本数 | 特征数 | 类别数 | 
|---|---|---|---|
| Tr45 | 690 | 8 610 | 10 | 
| USPS | 9 298 | 256 | 10 | 
| RCV1_4 | 9 625 | 29 992 | 4 | 
Tab. 2 Specific information of small-scale datasets
| 数据集 | 样本数 | 特征数 | 类别数 | 
|---|---|---|---|
| Tr45 | 690 | 8 610 | 10 | 
| USPS | 9 298 | 256 | 10 | 
| RCV1_4 | 9 625 | 29 992 | 4 | 
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| Tr45 | LMVSC | 72.31 | 69.23 | 75.65 | 5.70 | 
| SGL | 74.41 | 69.53 | 76.74 | 6.34 | |
| FNC | 48.40 | 31.22 | 31.22 | 4.83 | |
| KMM | 73.80 | 67.73 | 82.34 | 0.35 | |
| LLSC | 77.24 | 74.14 | 87.39 | 0.09 | |
| USPS | LMVSC | 67.96 | 63.78 | 72.18 | 20.16 | 
| SGL | 63.03 | 71.98 | 75.58 | 417.00 | |
| FNC | 70.60 | 50.21 | — | 48.00 | |
| KMM | 71.01 | 71.35 | — | 3.01 | |
| LLSC | 80.21 | 78.75 | 80.22 | 1.00 | |
| RCV1_4 | LMVSC | 68.35 | 40.01 | 75.16 | 585.00 | 
| SGL | 70.52 | 45.76 | 79.37 | 98.86 | |
| FNC | 65.37 | 35.00 | 35.00 | 85.90 | |
| KMM | 47.63 | 17.12 | 47.63 | 4.10 | |
| LLSC | 72.74 | 43.34 | 72.74 | 0.17 | 
Tab. 3 Clustering results on small-scale datasets
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| Tr45 | LMVSC | 72.31 | 69.23 | 75.65 | 5.70 | 
| SGL | 74.41 | 69.53 | 76.74 | 6.34 | |
| FNC | 48.40 | 31.22 | 31.22 | 4.83 | |
| KMM | 73.80 | 67.73 | 82.34 | 0.35 | |
| LLSC | 77.24 | 74.14 | 87.39 | 0.09 | |
| USPS | LMVSC | 67.96 | 63.78 | 72.18 | 20.16 | 
| SGL | 63.03 | 71.98 | 75.58 | 417.00 | |
| FNC | 70.60 | 50.21 | — | 48.00 | |
| KMM | 71.01 | 71.35 | — | 3.01 | |
| LLSC | 80.21 | 78.75 | 80.22 | 1.00 | |
| RCV1_4 | LMVSC | 68.35 | 40.01 | 75.16 | 585.00 | 
| SGL | 70.52 | 45.76 | 79.37 | 98.86 | |
| FNC | 65.37 | 35.00 | 35.00 | 85.90 | |
| KMM | 47.63 | 17.12 | 47.63 | 4.10 | |
| LLSC | 72.74 | 43.34 | 72.74 | 0.17 | 
| 数据集 | 样本数 | 特征数 | 类别数 | 
|---|---|---|---|
| MNIST | 70 000 | 784 | 10 | 
| Postures | 78 095 | 36 | 5 | 
| EMNIST(digits) | 280 000 | 784 | 10 | 
| Pokerhand | 1 000 000 | 10 | 10 | 
Tab. 4 Specific information of large-scale datasets
| 数据集 | 样本数 | 特征数 | 类别数 | 
|---|---|---|---|
| MNIST | 70 000 | 784 | 10 | 
| Postures | 78 095 | 36 | 5 | 
| EMNIST(digits) | 280 000 | 784 | 10 | 
| Pokerhand | 1 000 000 | 10 | 10 | 
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| MNIST | LMVSC | 58.89 | 53.74 | 65.98 | 73.33 | 
| SLSR | 52.26 | 47.72 | 57.06 | 252.28 | |
| LSC-k | 63.93 | 62.51 | — | 11.39 | |
| LLSC | 61.28 | 50.61 | 64.27 | 3.71 | |
| Postures | LMVSC | 30.69 | 10.52 | 74.16 | 11 269.00 | 
| SLSR | 47.78 | 38.57 | — | 11.13 | |
| LSC-k | 46.40 | 37.24 | — | 207.70 | |
| k-FSC | 54.65 | 39.39 | — | 173.90 | |
| LLSC | 58.79 | 41.63 | 59.66 | 3.77 | 
Tab. 5 Clustering results on MNIST and Postures datasets
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| MNIST | LMVSC | 58.89 | 53.74 | 65.98 | 73.33 | 
| SLSR | 52.26 | 47.72 | 57.06 | 252.28 | |
| LSC-k | 63.93 | 62.51 | — | 11.39 | |
| LLSC | 61.28 | 50.61 | 64.27 | 3.71 | |
| Postures | LMVSC | 30.69 | 10.52 | 74.16 | 11 269.00 | 
| SLSR | 47.78 | 38.57 | — | 11.13 | |
| LSC-k | 46.40 | 37.24 | — | 207.70 | |
| k-FSC | 54.65 | 39.39 | — | 173.90 | |
| LLSC | 58.79 | 41.63 | 59.66 | 3.77 | 
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| Pokerhand | LMVSC | 13.68 | 0.71 | 14.97 | 3 875.30 | 
| SLSR | 15.82 | 0.06 | 50.20 | 284.50 | |
| LSC-k | 12.32 | 0.00 | — | 8 829.00 | |
| k-FSC | 21.82 | 0.33 | — | 1 017.80 | |
| LLSC | 50.00 | 0.26 | 50.54 | 1 009.90 | |
| EMNIST (digits) | LMVSC | 45.27 | 43.81 | 64.93 | 7 867.00 | 
| SLSR | 51.83 | 38.53 | — | 182.52 | |
| LLSC | 60.53 | 61.21 | 66.16 | 12.54 | 
Tab. 6 Clustering results on Pokerhand and EMNIST(digits) datasets
| 数据集 | 算法 | Acc/% | NMI/% | Purity/% | Time/s | 
|---|---|---|---|---|---|
| Pokerhand | LMVSC | 13.68 | 0.71 | 14.97 | 3 875.30 | 
| SLSR | 15.82 | 0.06 | 50.20 | 284.50 | |
| LSC-k | 12.32 | 0.00 | — | 8 829.00 | |
| k-FSC | 21.82 | 0.33 | — | 1 017.80 | |
| LLSC | 50.00 | 0.26 | 50.54 | 1 009.90 | |
| EMNIST (digits) | LMVSC | 45.27 | 43.81 | 64.93 | 7 867.00 | 
| SLSR | 51.83 | 38.53 | — | 182.52 | |
| LLSC | 60.53 | 61.21 | 66.16 | 12.54 | 
| 1 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 10.1109/tpami.2013.57 | 
| 2 | XUE X, ZHANG X, FENG X, et al. Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel[J]. Information Sciences, 2020, 513: 190-205. 10.1016/j.ins.2019.10.058 | 
| 3 | ZHAO D, LIU J. Study on network security situation awareness based on particle swarm optimization algorithm[J]. Computers and Industrial Engineering, 2018, 125: 764-775. 10.1016/j.cie.2018.01.006 | 
| 4 | LI J, KONG Y, FU Y. Sparse subspace clustering by learning approximation ℓ0 codes[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 2189-2195. 10.1609/aaai.v31i1.10782 | 
| 5 | ZHENG M, GAO P, ZHANG R, et al. End-to-end object detection with adaptive clustering transformer[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.709. | 
| 6 | LIPOR J, HONG D, TAN Y S, et al. Subspace clustering using ensembles of K-subspaces[J]. Information and Inference: A Journal of the IMA, 2021, 10(1): 73-107. 10.1093/imaiai/iaaa031 | 
| 7 | HE L, RAY N, GUAN Y, et al. Fast large-scale spectral clustering via explicit feature mapping [J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1058-1071. 10.1109/tcyb.2018.2794998 | 
| 8 | KANG Z, ZHOU W, ZHAO Z, et al. Large-scale multi-view subspace clustering in linear time[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 4412-4419. 10.1609/aaai.v34i04.5867 | 
| 9 | LIU X, WANG L, ZHANG J, et al. Global and local structure preservation for feature selection [J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1083-1095. 10.1109/tnnls.2013.2287275 | 
| 10 | PENG C, ZHANG Z, KANG Z, et al. Nonnegative matrix factorization with local similarity learning[J]. Information Sciences, 2021, 562:325-346. 10.1016/j.ins.2021.01.087 | 
| 11 | DING C, HE X, SIMON H D. Nonnegative Lagrangian relaxation of K-means and spectral clustering [C]// Proceedings of the 2005 European Conference on Machine Learning, LNCS 3720. Berlin: Springer, 2005: 530-538. | 
| 12 | FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nyström method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. 10.1109/tpami.2004.1262185 | 
| 13 | FRANGELLA Z, TROPP J A, UDELL M. Randomized Nyström preconditioning[J]. SIAM Journal on Matrix Analysis and Applications, 2023, 44(2): 718-752. 10.1137/21m1466244 | 
| 14 | HUANG W, YIN M, LI J, et al. Deep clustering via weighted k-subspace network[J]. IEEE Signal Processing Letters, 2019, 26(11): 1628-1632. 10.1109/lsp.2019.2941368 | 
| 15 | LI J, LIU H, TAO Z, et al. Learnable subspace clustering [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(3):1119-1133. 10.1109/tnnls.2020.3040379 | 
| 16 | HUANG S, ZHANG H, PIŽURICA A. Sketched sparse subspace clustering for large-scale hyperspectral images [C]// Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 1766-1770. 10.1109/icip40778.2020.9191074 | 
| 17 | ZHOU L, BAI X, ZHANG L, et al. Fast subspace clustering based on the Kronecker product[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 1558-1565. 10.1109/icpr48806.2021.9412287 | 
| 18 | LI J, TAO Z, WU Y, et al. Large-scale subspace clustering by independent distributed and parallel coding[J]. IEEE Transactions on Cybernetics, 2022, 52(9):9090-9100. 10.1109/tcyb.2021.3052056 | 
| 19 | FAN J. Large-scale subspace clustering via k-factorization [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 342-352. 10.1145/3447548.3467267 | 
| 20 | FENG Z, DONG J, GAO X, et al. Subspace representation based on pairwise linear regression for large scale image set classification[C]// Proceedings of the SPIE 12083, 13th International Conference on Graphics and Image Processing. Bellingham, WA: SPIE, 2022: No.1208318. 10.1117/12.2623163 | 
| 21 | SI X, YIN Q, ZHAO X, et al. Consistent and diverse multi-view subspace clustering with structure constraint[J]. Pattern Recognition, 2022, 121: No.108196. 10.1016/j.patcog.2021.108196 | 
| 22 | XU Y, CHEN S, LI J, et al. Linearity-aware subspace clustering[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 8770-8778. 10.1609/aaai.v36i8.20857 | 
| 23 | WANG Y, WU L, LIN X, et al. Multiview spectral clustering via structured low-rank matrix factorization [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4833-4843. 10.1109/tnnls.2017.2777489 | 
| 24 | 崔艺馨, 陈晓东.Spark框架优化的大规模谱聚类并行算法[J]. 计算机应用, 2020, 40(1): 168-172. | 
| CUI Y X, CHEN X D. Spark framework based optimized large-scale spectral clustering parallel algorithm [J]. Journal of Computer Applications, 2020, 40(1): 168-172. | |
| 25 | ZHU X, ZHANG S, LI Y, et al. Low-rank sparse subspace for spectral clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(8): 1532-1543. 10.1109/tkde.2018.2858782 | 
| 26 | HU Z, NIE F, WANG R, et al. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding [J]. Information Fusion, 2020, 55: 251-259. 10.1016/j.inffus.2019.09.005 | 
| 27 | WANG C L, NIE F, WANG R, et al. Revisiting fast spectral clustering with anchor graph [C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2020: 3902-3906. 10.1109/icassp40776.2020.9053271 | 
| 28 | YANG Y, DENG S, LU J, et al. GraphLSHC: towards large scale spectral hypergraph clustering [J]. Information Sciences, 2021, 544: 117-134. 10.1016/j.ins.2020.07.018 | 
| 29 | ZHAO Z, ZHANG Y, FENG Z. Towards scalable spectral embedding and data visualization via spectral coarsening[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 869-877. 10.1145/3437963.3441767 | 
| 30 | HAJJAR S EL, DORNAIKA F, ABDALLAH F. One-step multi-view spectral clustering with cluster label correlation graph [J]. Information Sciences, 2022, 592: 97-111. 10.1016/j.ins.2022.01.017 | 
| 31 | INOUBLI W, ARIDHI S, MEZNI H, et al. A distributed and incremental algorithm for large-scale graph clustering [J]. Future Generation Computer Systems, 2022, 134: 334-347. 10.1016/j.future.2022.04.013 | 
| 32 | WANG S, LIU X, LIU L, et al. Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9766-9775. 10.1109/cvpr52688.2022.00955 | 
| 33 | HE W, ZHANG Z, CHEN Y, et al. Structured anchor-inferred graph learning for universal incomplete multi-view clustering [J]. World Wide Web, 2023, 26(1): 375-399. 10.1007/s11280-022-01012-7 | 
| 34 | PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. 10.1002/env.3170050203 | 
| 35 | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. 10.1038/44565 | 
| 36 | LU X, DONG L, YUAN Y. Subspace clustering constrained sparse NMF for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3007-3019. 10.1109/tgrs.2019.2946751 | 
| 37 | PENG S, SER W, CHEN B, et al. Robust nonnegative matrix factorization with local coordinate constraint for image clustering[J]. Engineering Applications of Artificial Intelligence, 2020, 88: No.103354. 10.1016/j.engappai.2019.103354 | 
| 38 | ZHANG K, ZHAO X, PENG S. Multiple graph regularized semi-supervised nonnegative matrix factorization with adaptive weights for clustering[J]. Engineering Applications of Artificial Intelligence, 2021, 106: No.104499. 10.1016/j.engappai.2021.104499 | 
| 39 | PENG C, ZHANG Z, KANG Z, et al. Nonnegative matrix factorization with local similarity learning[J]. Information Sciences, 2021, 562: 325-346. 10.1016/j.ins.2021.01.087 | 
| 40 | GILLIS N, HIEN L T K, LEPLAT V, et al. Distributionally robust and multi-objective nonnegative matrix factorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4052-4064. | 
| 41 | LEPLAT V, GILLIS N, FÉVOTTE C. Multi-resolution beta-divergence NMF for blind spectral unmixing[J]. Signal Processing, 2022, 193: No.108428. 10.1016/j.sigpro.2021.108428 | 
| 42 | LIU X, SONG P, SHENG C, et al. Robust multi-view non-negative matrix factorization for clustering [J]. Digital Signal Processing, 2022, 123: No.103447. 10.1016/j.dsp.2022.103447 | 
| 43 | FAN D, ZHANG X, KANG W, et al. Video watermarking algorithm based on NSCT, pseudo 3D-DCT and NMF[J]. Sensors, 2022, 22(13): No.4752. 10.3390/s22134752 | 
| 44 | KANG Z, PENG C, CHENG Q. Twin learning for similarity and clustering: a unified kernel approach [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 2080-2086. 10.1609/aaai.v31i1.10853 | 
| 45 | PENG R, SUN H, ZANETTI L. Partitioning well-clustered graphs: spectral clustering works! [C]// Proceedings of the 28th Conference on Learning Theory. New York: JMLR.org, 2015: 1423-1455. | 
| 46 | CHEN X, CAI D. Large scale spectral clustering with landmark-based representation [C]// Proceedings of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2011: 313-318. 10.1609/aaai.v25i1.7900 | 
| 47 | KANG Z, LIN Z, ZHU X, et al. Structured graph learning for scalable subspace clustering: from single view to multiview [J]. IEEE Transactions on Cybernetics, 2022, 52(9): 8976-8986. 10.1109/tcyb.2021.3061660 | 
| 48 | CHEN X, HONG W, NIE F, et al. Spectral clustering of large-scale data by directly solving normalized cut [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1206-1215. 10.1145/3219819.3220039 | 
| 49 | NIE F, WANG C L, LI X. K-multiple-means: a multiple-means clustering method with specified k clusters [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 959-967. 10.1145/3292500.3330846 | 
| 50 | CAI D, CHEN X. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cybernetics, 2015, 45(8): 1669-1680. 10.1109/tcyb.2014.2358564 | 
| 51 | PENG X, TANG H, ZHANG L, et al. A unified framework for representation-based subspace clustering of out-of-sample and large-scale data [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(12): 2499-2512. 10.1109/tnnls.2015.2490080 | 
| [1] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. | 
| [2] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. | 
| [3] | Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm [J]. Journal of Computer Applications, 2023, 43(2): 407-412. | 
| [4] | Lili FAN, Guifu LU, Ganyi TANG, Dan YANG. Low-rank representation subspace clustering method based on Hessian regularization and non-negative constraint [J]. Journal of Computer Applications, 2022, 42(1): 115-122. | 
| [5] | WANG Jinkai, JIA Xu. Vein recognition algorithm based on Siamese nonnegative matrix factorization with transferability [J]. Journal of Computer Applications, 2021, 41(3): 898-903. | 
| [6] | Ran GAO, Huazhu CHEN. Improved subspace clustering model based on spectral clustering [J]. Journal of Computer Applications, 2021, 41(12): 3645-3651. | 
| [7] | Hua LI, Guifu LU, Qinru YU. Manifold regularized nonnegative matrix factorization based on clean data [J]. Journal of Computer Applications, 2021, 41(12): 3492-3498. | 
| [8] | ZHU Yuna, ZHANG Yutao, YAN Shaoge, FAN Yudan, CHEN Hantuo. Protocol identification approach based on semi-supervised subspace clustering [J]. Journal of Computer Applications, 2021, 41(10): 2900-2904. | 
| [9] | WANG Lijuan, CHEN Shaomin, YIN Ming, XU Yueying, HAO Zhifeng, CAI Ruichu, WEN Wen. Improved block diagonal subspace clustering algorithm based on neighbor graph [J]. Journal of Computer Applications, 2021, 41(1): 36-42. | 
| [10] | WANG Jinkai, JIA Xu. Vehicle face recognition algorithm based on NMF with weighted and orthogonal constraints [J]. Journal of Computer Applications, 2020, 40(4): 1050-1055. | 
| [11] | Meng ZENG, Bin NING, Zhihua CAI, Qiong GU. Hyperspectral band selection based on deep adversarial subspace clustering [J]. Journal of Computer Applications, 2020, 40(2): 381-385. | 
| [12] | LI Denggang, CHEN Xiangxiang, LI Huali, WANG Zhongmei. Manifold regularized sparse constraint nonnegative matrix factorization with superpixel algorithm for hyperspectral unmixing [J]. Journal of Computer Applications, 2019, 39(10): 3100-3106. | 
| [13] | CAO Dawei, HE Chaobo, CHEN Qimai, LIU Hai. Short text clustering algorithm based on weighted kernel nonnegative matrix factorization [J]. Journal of Computer Applications, 2018, 38(8): 2180-2184. | 
| [14] | JIA Xu, SUN Fuming, LI Haojie, CAO Yudong. Image feature extraction method based on improved nonnegative matrix factorization with universality [J]. Journal of Computer Applications, 2018, 38(1): 233-237. | 
| [15] | CHENG Lingfang, YANG Tianpeng, CHEN Lifei. Soft subspace clustering algorithm for imbalanced data [J]. Journal of Computer Applications, 2017, 37(10): 2952-2957. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||