| 1 | 齐亮,李邦昱,陈连凯. 基于改进的Faster R-CNN船舶目标检测算法[J]. 中国造船, 2020, 61(S1): 40-51.  10.3969/j.issn.1000-4882.2020.z1.006 | 
																													
																							|  | QI L, LI B Y, CHEN L K. Ship target detection algorithm based on improved Faster R-CNN[J]. Shipbuilding of China, 2020, 61(S1):40-51.  10.3969/j.issn.1000-4882.2020.z1.006 | 
																													
																							| 2 | SUN J W, XU Z J, LIANG S S. NSD-SSD: a novel real-time ship detector based on convolutional neural network in surveillance video[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.7018035.  10.1155/2021/7018035 | 
																													
																							| 3 | 段敬雅,李彬,董超,等. 基于YOLOv2的船舶目标检测分类算法[J].计算机工程与设计, 2020, 41(6):1701-1707. | 
																													
																							|  | DUAN J Y, LI B, DONG C, et al. Detection and classification of ship target based on YOLOv2[J]. Computer Engineering and Design, 2020, 41(6):1701-1707. | 
																													
																							| 4 | 盛明伟,李俊,秦洪德,等. 基于改进YOLOv3的船舶目标检测算法[J]. 导航与控制, 2021, 20(2):95-109. | 
																													
																							|  | SHENG M W, LI J, QIN H D, et al. Ship target detection algorithm based on the improved YOLOv3[J]. Navigation and Control, 2021, 20(2):95-109. | 
																													
																							| 5 | CHEN D H, SUN S R, LEI Z J, et al. Ship target detection algorithm based on improved YOLOv3 for maritime image[J]. Journal of Advanced Transportation, 2021, 2021: No.9440212.  10.1155/2021/9440212 | 
																													
																							| 6 | LI H, DENG L B, YANG C, et al. Enhanced YOLO v3 tiny network for real-time ship detection from visual image[J]. IEEE Access, 2021, 9: 16692-16706.  10.1109/access.2021.3053956 | 
																													
																							| 7 | 孔刘玲,刘秀文. 基于改进YOLOv4算法的船舶目标检测方法[J].船舶工程, 2022, 44(1): 96-103, 147. | 
																													
																							|  | KONG L L, LIU X W. Ship target detection algorithm based on improved YOLOv4[J]. Ship Engineering, 2022, 44(1):96-103, 147. | 
																													
																							| 8 | HAN X, ZHAO L, NING Y, et al. ShipYOLO: an enhanced model for ship detection[J]. Journal of Advanced Transportation, 2021, 2021: No.1060182.  10.1155/2021/1060182 | 
																													
																							| 9 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.  10.1109/tpami.2015.2389824 | 
																													
																							| 10 | ZHOU S Y, YIN J. YOLO-Ship: a visible light ship detection method[C]// Proceedings of the 2nd International Conference on Consumer Electronics and Computer Engineering. Piscataway: IEEE, 2022: 113-118.  10.1109/iccece54139.2022.9712768 | 
																													
																							| 11 | JOCHER G. YOLOv5 releases v 6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO export and inference[CP/OL]. [2022-03-10].. | 
																													
																							| 12 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.  10.1109/iccv.2017.324 | 
																													
																							| 13 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.  10.1109/cvpr.2017.106 | 
																													
																							| 14 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.  10.1109/cvpr.2018.00913 | 
																													
																							| 15 | LENG Z Q, TAN M X, LIU C X, et al. PolyLoss: a polynomial expansion perspective of classification Loss functions[EB/OL]. [2022-06-21].. | 
																													
																							| 16 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.  10.1109/tpami.2017.2699184 | 
																													
																							| 17 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
																													
																							| 18 | TAN M, LE Q V. MixConv: mixed depthwise convolutional kernels[C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.116.  10.1109/iccvw.2019.00249 | 
																													
																							| 19 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:1800-1807.  10.1109/cvpr.2017.195 | 
																													
																							| 20 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.  10.1109/cvpr46437.2021.01350 | 
																													
																							| 21 | HURTIK P, MOLEK V, HULA J, et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3[J]. Neural Computing and Applications, 2022, 34(10): 8275-8290.  10.1007/s00521-021-05978-9 | 
																													
																							| 22 | SHAO Z F, WU W J, WANG Z Y, et al. SeaShips: a large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593-2604.  10.1109/tmm.2018.2865686 |