Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2325-2329.DOI: 10.11772/j.issn.1001-9081.2022121865
• The 19th International Conference on Web Information Systems and Applications (WISA 2022) • Previous Articles Next Articles
Junjian JIANG1, Dawei LIU1, Yifan LIU1, Yougui REN1,2, Zhibin ZHAO1()
Received:
2022-12-15
Revised:
2023-02-02
Accepted:
2023-02-08
Online:
2023-04-21
Published:
2023-08-10
Contact:
Zhibin ZHAO
About author:
JIANG Junjian, born in 1998, M. S. candidate. His research interests include machine learning, computer vision.Supported by:
姜钧舰1, 刘达维1, 刘逸凡1, 任酉贵1,2, 赵志滨1()
通讯作者:
赵志滨
作者简介:
姜钧舰(1998—),男,辽宁丹东人,硕士研究生,CCF会员,主要研究方向:机器学习、计算机视觉基金资助:
CLC Number:
Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network[J]. Journal of Computer Applications, 2023, 43(8): 2325-2329.
姜钧舰, 刘达维, 刘逸凡, 任酉贵, 赵志滨. 基于孪生网络的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2325-2329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121865
名称 | ResNet | ResNet-DW |
---|---|---|
conv1 | 7×7Conv,N=64,stride=2 | 7×7 Conv, N=64, stride=2 |
conv2_x | 3×3maxpool, stride=2 | 3×3maxpool, stride=2 |
conv3_x | ||
conv4_x | ||
conv5_x |
Tab. 1 Network structure parameters
名称 | ResNet | ResNet-DW |
---|---|---|
conv1 | 7×7Conv,N=64,stride=2 | 7×7 Conv, N=64, stride=2 |
conv2_x | 3×3maxpool, stride=2 | 3×3maxpool, stride=2 |
conv3_x | ||
conv4_x | ||
conv5_x |
K | 算法 | mAP | AP50 | AP75 |
---|---|---|---|---|
2 | TFA | 5.4 | 15.1 | 4.6 |
MSPR | 6.7 | 18.0 | 6.2 | |
DeFRCN | 10.8 | 21.9 | 8.8 | |
SiamDet | 11.0 | 22.8 | 8.6 | |
5 | TFA | 7.7 | 19.3 | 6.8 |
MSPR | 8.7 | 20.0 | 8.0 | |
DeFRCN | 13.7 | 27.8 | 11.1 | |
SiamDet | 13.7 | 28.6 | 11.0 |
Tab. 2 Experimental results on MS-COCO dataset
K | 算法 | mAP | AP50 | AP75 |
---|---|---|---|---|
2 | TFA | 5.4 | 15.1 | 4.6 |
MSPR | 6.7 | 18.0 | 6.2 | |
DeFRCN | 10.8 | 21.9 | 8.8 | |
SiamDet | 11.0 | 22.8 | 8.6 | |
5 | TFA | 7.7 | 19.3 | 6.8 |
MSPR | 8.7 | 20.0 | 8.0 | |
DeFRCN | 13.7 | 27.8 | 11.1 | |
SiamDet | 13.7 | 28.6 | 11.0 |
K | 算法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
2 | TFA | 18.5 | 36.1 | 14.2 | 12.0 | 26.9 | 8.6 | 16.1 | 34.8 | 10.5 |
MSPR | 19.6 | 40.5 | 15.8 | 12.5 | 30.3 | 8.9 | 16.3 | 39.5 | 11.0 | |
DeFRCN | 21.7 | 44.6 | 18.2 | 14.8 | 32.7 | 10.3 | 17.8 | 41.1 | 13.1 | |
SiamDet | 20.6 | 44.9 | 18.2 | 14.9 | 33.0 | 10.5 | 18.0 | 41.8 | 13.4 | |
5 | TFA | 22.4 | 46.3 | 16.1 | 17.6 | 38.9 | 11.8 | 20.1 | 42.6 | 14.2 |
MSPR | 23.7 | 50.6 | 19.8 | 18.8 | 41.5 | 12.1 | 20.5 | 44.8 | 15.6 | |
DeFRCN | 26.8 | 54.5 | 21.4 | 20.1 | 44.6 | 14.4 | 22.4 | 47.3 | 17.1 | |
SiamDet | 26.9 | 55.9 | 21.5 | 21.5 | 45.0 | 14.4 | 22.6 | 47.5 | 17.6 |
Tab. 3 Experimental results on PASCAL VOC dataset
K | 算法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
2 | TFA | 18.5 | 36.1 | 14.2 | 12.0 | 26.9 | 8.6 | 16.1 | 34.8 | 10.5 |
MSPR | 19.6 | 40.5 | 15.8 | 12.5 | 30.3 | 8.9 | 16.3 | 39.5 | 11.0 | |
DeFRCN | 21.7 | 44.6 | 18.2 | 14.8 | 32.7 | 10.3 | 17.8 | 41.1 | 13.1 | |
SiamDet | 20.6 | 44.9 | 18.2 | 14.9 | 33.0 | 10.5 | 18.0 | 41.8 | 13.4 | |
5 | TFA | 22.4 | 46.3 | 16.1 | 17.6 | 38.9 | 11.8 | 20.1 | 42.6 | 14.2 |
MSPR | 23.7 | 50.6 | 19.8 | 18.8 | 41.5 | 12.1 | 20.5 | 44.8 | 15.6 | |
DeFRCN | 26.8 | 54.5 | 21.4 | 20.1 | 44.6 | 14.4 | 22.4 | 47.3 | 17.1 | |
SiamDet | 26.9 | 55.9 | 21.5 | 21.5 | 45.0 | 14.4 | 22.6 | 47.5 | 17.6 |
ResNet-DW | ResNet | GDL | Attention-RPN | mAP/% |
---|---|---|---|---|
√ | 8.6 | |||
√ | √ | 11.0 | ||
√ | √ | 10.2 | ||
√ | √ | √ | 12.5 | |
√ | √ | √ | 13.7 |
Tab. 4 Ablation experiment results
ResNet-DW | ResNet | GDL | Attention-RPN | mAP/% |
---|---|---|---|---|
√ | 8.6 | |||
√ | √ | 11.0 | ||
√ | √ | 10.2 | ||
√ | √ | √ | 12.5 | |
√ | √ | √ | 13.7 |
1 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.4 |
2 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 10.1023/b:visi.0000029664.99615.94 |
3 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99. |
4 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-04-13].. 10.1109/cvpr.2017.690 |
5 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
6 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
8 | HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attention and co-excitation[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 2725-2734. |
9 | KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. 10.1109/iccv.2019.00851 |
10 | FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021. 10.1109/cvpr42600.2020.00407 |
11 | QIAO L M, ZHAO Y X, LI Z Y, et al. DeFRCN: decoupled Faster R-CNN for few-shot object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670. 10.1109/iccv48922.2021.00856 |
12 | CUCCHIARA R, GRANA C, PICCARDI M, et al. Improving shadow suppression in moving object detection with HSV color information[C]// Proceedings of the 2001 IEEE Intelligent Transportation Systems. Piscataway: IEEE, 2001: 334-339. |
13 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
14 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
15 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-05-06].. |
16 | CHEN H, WANG Y L, WANG G Y, et al. LSTD: a low-shot transfer detector for object detection[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 2836-2843. 10.1609/aaai.v32i1.11716 |
17 | WANG T, ZHANG X P, YUAN L, et al. Few-shot adaptive Faster R-CNN[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7166-7175. 10.1109/cvpr.2019.00734 |
18 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. |
19 | ZHANG G J, CUI K W, WU R L, et al. PNPDet: efficient few-shot detection without forgetting via plug-and-play sub-networks[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3822-3831. 10.1109/wacv48630.2021.00387 |
20 | ZHANG T F, ZHANG Y, SUN X, et al. Comparison network for one-shot conditional object detection[EB/OL]. [2022-02-28].. 10.1016/j.neucom.2020.04.092 |
21 | PÉREZ-RÚA J M, ZHU X T, HOSPEDALES T M, et al. Incremental few-shot object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13843-13852. 10.1109/cvpr42600.2020.01386 |
22 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-08-04].. 10.48550/arXiv.1704.04861 |
23 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
24 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323. |
25 | HADSELL R, CHOPRA S, LeCUN Y. Dimensionality reduction by learning an invariant mapping[C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 1735-1742. 10.1109/cvpr.2006.9 |
26 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 |
27 | WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[3] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
[4] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[5] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[6] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[8] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
[9] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[11] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[12] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[13] | Ziwen SUN, Lizhi QIAN, Chuandong YANG, Yibo GAO, Qingyang LU, Guanglin YUAN. Survey of visual object tracking methods based on Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1644-1654. |
[14] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. |
[15] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||