Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3616-3624.DOI: 10.11772/j.issn.1001-9081.2022111749
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Bolu LI, Li WU, Xiaoying WANG( ), Jianqiang HUANG, Tengfei CAO
), Jianqiang HUANG, Tengfei CAO
												  
						
						
						
					
				
Received:2022-11-24
															
							
																	Revised:2023-03-10
															
							
																	Accepted:2023-03-17
															
							
							
																	Online:2023-04-03
															
							
																	Published:2023-11-10
															
							
						Contact:
								Xiaoying WANG   
													About author:LI Bolu, born in 1997, M. S. candidate. His research interests include artificial intelligence, spatio-temporal meteorological prediction.Supported by:通讯作者:
					王晓英
							作者简介:李博录(1997—),男,甘肃天水人,硕士研究生,主要研究方向:人工智能、时空气象预测基金资助:CLC Number:
Bolu LI, Li WU, Xiaoying WANG, Jianqiang HUANG, Tengfei CAO. Multi-site wind speed prediction based on graph dynamic attention network[J]. Journal of Computer Applications, 2023, 43(11): 3616-3624.
李博录, 吴利, 王晓英, 黄建强, 曹腾飞. 基于图动态注意力网络的多站点风速预测[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3616-3624.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111749
| 网络模块 | 模块层数 | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| n_Decoder | 1.38 | 1.37 | 1.23 | 1.40 | 1.55 | 1.57 | 
| n_Encoder | 1.51 | 1.48 | 1.23 | 3.48 | 2.80 | 1.66 | 
| n_Layer | 1.46 | 1.30 | 1.23 | 1.42 | 1.34 | 1.70 | 
| 网络模块 | 注意力头数 | |||||
| 1 | 2 | 4 | 8 | 16 | 32 | |
| n_Head | 1.43 | 1.33 | 1.34 | 1.23 | 1.31 | 1.37 | 
Tab. 1 RMSE under different conditions
| 网络模块 | 模块层数 | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| n_Decoder | 1.38 | 1.37 | 1.23 | 1.40 | 1.55 | 1.57 | 
| n_Encoder | 1.51 | 1.48 | 1.23 | 3.48 | 2.80 | 1.66 | 
| n_Layer | 1.46 | 1.30 | 1.23 | 1.42 | 1.34 | 1.70 | 
| 网络模块 | 注意力头数 | |||||
| 1 | 2 | 4 | 8 | 16 | 32 | |
| n_Head | 1.43 | 1.33 | 1.34 | 1.23 | 1.31 | 1.37 | 
| 时长/h | 模型 | RMSE | MAE | 时长/h | 模型 | RMSE | MAE | 时长/h | 模型 | RMSE | MAE | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ConvLSTM | 1.73 | 1.36 | 6 | ConvLSTM | 2.18 | 1.71 | 12 | ConvLSTM | 2.97 | 2.31 | 
| STDN | 1.70 | 1.31 | STDN | 2.12 | 1.70 | STDN | 2.34 | 1.76 | |||
| GMAN | 1.74 | 1.38 | GMAN | 2.08 | 1.57 | GMAN | 2.29 | 1.75 | |||
| STGCN | 1.50 | 1.16 | STGCN | 2.13 | 1.70 | STGCN | 2.95 | 2.30 | |||
| Xgboost | 1.36 | 1.04 | Xgboost | 1.93 | 1.48 | Xgboost | 2.19 | 1.72 | |||
| DSAN | 1.28 | 0.95 | DSAN | 2.07 | 1.52 | DSAN | 2.49 | 1.97 | |||
| Graph⁃DSAN | 1.23 | 0.89 | Graph⁃DSAN | 1.85 | 1.43 | Graph⁃DSAN | 2.13 | 1.71 | 
Tab. 2 Comparison of multi-step wind speed prediction results of different models
| 时长/h | 模型 | RMSE | MAE | 时长/h | 模型 | RMSE | MAE | 时长/h | 模型 | RMSE | MAE | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ConvLSTM | 1.73 | 1.36 | 6 | ConvLSTM | 2.18 | 1.71 | 12 | ConvLSTM | 2.97 | 2.31 | 
| STDN | 1.70 | 1.31 | STDN | 2.12 | 1.70 | STDN | 2.34 | 1.76 | |||
| GMAN | 1.74 | 1.38 | GMAN | 2.08 | 1.57 | GMAN | 2.29 | 1.75 | |||
| STGCN | 1.50 | 1.16 | STGCN | 2.13 | 1.70 | STGCN | 2.95 | 2.30 | |||
| Xgboost | 1.36 | 1.04 | Xgboost | 1.93 | 1.48 | Xgboost | 2.19 | 1.72 | |||
| DSAN | 1.28 | 0.95 | DSAN | 2.07 | 1.52 | DSAN | 2.49 | 1.97 | |||
| Graph⁃DSAN | 1.23 | 0.89 | Graph⁃DSAN | 1.85 | 1.43 | Graph⁃DSAN | 2.13 | 1.71 | 
| 方法 | 预测时长为1 h | 预测时长为12 h | ||
|---|---|---|---|---|
| RMSE | MAE | RMSE | MAE | |
| DSAN-NS | 1.31 | 0.98 | 2.42 | 1.92 | 
| DSAN-SS | 1.41 | 1.06 | 2.60 | 2.00 | 
| DSAN-NE | 1.48 | 1.10 | 2.45 | 1.97 | 
| DSAN-ND | 1.42 | 1.07 | 2.74 | 2.15 | 
| Graph⁃DSAN | 1.23 | 0.89 | 2.13 | 1.71 | 
Tab. 3 Influence of different modules on model
| 方法 | 预测时长为1 h | 预测时长为12 h | ||
|---|---|---|---|---|
| RMSE | MAE | RMSE | MAE | |
| DSAN-NS | 1.31 | 0.98 | 2.42 | 1.92 | 
| DSAN-SS | 1.41 | 1.06 | 2.60 | 2.00 | 
| DSAN-NE | 1.48 | 1.10 | 2.45 | 1.97 | 
| DSAN-ND | 1.42 | 1.07 | 2.74 | 2.15 | 
| Graph⁃DSAN | 1.23 | 0.89 | 2.13 | 1.71 | 
| 1 | 刘苇航,叶涛,史培军,等. 气候变化对粮食生产风险的影响研究进展[J]. 自然灾害学报, 2022, 31(4):1-11. | 
| LIU W H, YE T, SHI P J, et al. Advances in the study of climate change impact on crop producing risk[J]. Journal of Natural Disasters, 2022, 31(4): 1-11. | |
| 2 | 孟鑫禹,王睿涵,张喜平,等. 基于经验模态分解与多分支神经网络的超短期风功率预测[J]. 计算机应用, 2021, 41(1): 237-242. 10.11772/j.issn.1001-9081.2020060930 | 
| MENG X Y, WANG R H, ZHANG X P, et al. Ultra-short-term wind power prediction based on empirical mode decomposition and multi-branch neural network[J]. Journal of Computer Applications, 2021, 41(1): 237-242. 10.11772/j.issn.1001-9081.2020060930 | |
| 3 | PIOTROWSKI P, BACZYŃSKI D, KOPYT M, et al. Analysis of forecasted meteorological data (NWP) for efficient spatial forecasting of wind power generation[J]. Electric Power Systems Research, 2019, 175: No.105891. 10.1016/j.epsr.2019.105891 | 
| 4 | AGRAWAL S, BARRINGTON L, BROMBERG C, et al. Machine learning for precipitation nowcasting from radar images[EB/OL]. (2019-12-11) [2022-11-08].. | 
| 5 | 孙丽华,严军峰,徐健锋. 基于多机器学习竞争策略的短时雷电预报[J]. 计算机应用, 2016, 36(9):2555-2559. 10.11772/j.issn.1001-9081.2016.09.2555 | 
| SUN L H, YAN J F, XU J F. Short-term lightning prediction based on multi-machine learning competitive strategy[J]. Journal of Computer Applications, 2016, 36(9): 2555-2559. 10.11772/j.issn.1001-9081.2016.09.2555 | |
| 6 | RAVURI S, LENC K, WILLSON M, et al. Skilful precipitation nowcasting using deep generative models of radar[J]. Nature, 2021, 597(7878): 672-677. 10.1038/s41586-021-03854-z | 
| 7 | 石峰,楼文高,张博. 基于灰狼群智能最优化的神经网络PM2.5浓度预测[J]. 计算机应用, 2017, 37(10):2854-2860. 10.11772/j.issn.1001-9081.2017.10.2854 | 
| SHI F, LOU W G, ZHANG B. Neural network model for PM2.5 concentration prediction by grey wolf optimizer algorithm[J]. Journal of Computer Applications, 2017, 37(10): 2854-2860. 10.11772/j.issn.1001-9081.2017.10.2854 | |
| 8 | 王军,费凯,程勇. 基于改进Adaboost-BP模型在降水中的预测[J]. 计算机应用, 2017, 37(9):2689-2693. 10.11772/j.issn.1001-9081.2017.09.2689 | 
| WANG J, FEI K, CHENG Y. Prediction of rainfall based on improved Adaboost-BP model[J]. Journal of Computer Applications, 2017, 37(9): 2689-2693. 10.11772/j.issn.1001-9081.2017.09.2689 | |
| 9 | SCHER S. Toward data‐driven weather and climate forecasting: approximating a simple general circulation model with deep learning[J]. Geophysical Research Letters, 2018, 45(22): 12616-12622. 10.1029/2018gl080704 | 
| 10 | SALMAN A G, KANIGORO B, HERYADI Y. Weather forecasting using deep learning techniques[C]// Proceedings of the 2015 International Conference on Advanced Computer Science and Information Systems. Piscataway: IEEE, 2015: 281-285. 10.1109/icacsis.2015.7415154 | 
| 11 | MEHRKANOON S. Deep shared representation learning for weather elements forecasting[J]. Knowledge-Based Systems, 2019, 179: 120-128. 10.1016/j.knosys.2019.05.009 | 
| 12 | TREBING K, MEHRKANOON S. Wind speed prediction using multidimensional convolutional neural networks[C]// Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2020: 713-720. 10.1109/ssci47803.2020.9308323 | 
| 13 | ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6: No.11. 10.1186/s40649-019-0069-y | 
| 14 | STAŃCZYK T, MEHRKANOON S. Deep graph convolutional networks for wind speed prediction[C/OL]// Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning [2022-11-08].. 10.14428/esann/2021.es2021-25 | 
| 15 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3634-3640. 10.24963/ijcai.2018/505 | 
| 16 | LIN H, BAI R, JIA W, et al. Preserving dynamic attention for long-term spatial-temporal prediction[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 36-46. 10.1145/3394486.3403046 | 
| 17 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 | 
| 18 | SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 802-810. | 
| 19 | WANG Y, LONG M, WANG J, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 879-888. | 
| 20 | TREBING K, STAǸCZYK T, MEHRKANOON S. SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178-186. 10.1016/j.patrec.2021.01.036 | 
| 21 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
| 22 | 廖雪超,伍杰平,陈才圣. 结合注意力机制与LSTM的短期风电功率预测模型[J]. 计算机工程, 2022, 48(9):286-297, 304. 10.19678/j.issn.1000-3428.0062059 | 
| LIAO X C, WU J P, CHEN C S. Short-term wind power prediction model combining attention mechanism and LSTM[J]. Computer Engineering, 2022, 48(9): 286-297, 304. 10.19678/j.issn.1000-3428.0062059 | |
| 23 | WILSON Y, TAN P N, LUO L. A low rank weighted graph convolutional approach to weather prediction[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 627-636. 10.1109/icdm.2018.00078 | 
| 24 | SEO S, MOHEGH A, BAN-WEISS G. with recurrent neural networks for spatiotemporal forecasting[C]// Proceedings of the 7th International Workshop on Climate Informatics. Boulder, CO: National Center for Atmospheric Research in Boulder, 2017: 85-88. | 
| 25 | 祁柏林,郭昆鹏,杨彬,等. 基于GCN-LSTM的空气质量预测[J]. 计算机系统应用, 2021, 30(3): 208-213. 10.15888/j.cnki.csa.007815 | 
| QI B L, GUO K P, YANG B, et al. Air quality prediction based on GCN-LSTM[J]. Computer Systems and Applications, 2021, 30(3): 208-213. 10.15888/j.cnki.csa.007815 | |
| 26 | XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2019-02-22) [2022-11-11].. | 
| 27 | KIPF T N, WEWLLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-11-11].. 10.48550/arXiv.1609.02907 | 
| 28 | GAO H, WANG Z, JI S. Large-scale learnable graph convolutional networks[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1416-1424. 10.1145/3219819.3219947 | 
| 29 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. | 
| 30 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-11-12].. | 
| 31 | BRONSTEIN M M, BRUNA J, LeCUN Y, et al. Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. 10.1109/msp.2017.2693418 | 
| 32 | ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. 10.1016/j.aiopen.2021.01.001 | 
| 33 | NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2014-2023. | 
| 34 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-03-21) [2022-11-12].. 10.1017/cbo9780511761942.003 | 
| 35 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. | 
| 36 | Meteorological Development Laboratory/Office of Science and Technology/National Weather Service/NOAA/U.S. Department of Commerce. TDL U.S. and Canada surface hourly observations[DB/OL]. [2022-11-12].. | 
| 37 | YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]// AAAI’19/IAAI’19/EAAI’19: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5668-5675. 10.1609/aaai.v33i01.33015668 | 
| 38 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 1234-1241. 10.1609/aaai.v34i01.5477 | 
| [1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [5] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. | 
| [6] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. | 
| [7] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [8] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [10] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [11] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [15] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||