Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2216-2224.DOI: 10.11772/j.issn.1001-9081.2023060773
• Multimedia computing and computer simulation • Previous Articles Next Articles
Zhe KONG1, Han LI1, Shaowei GAN1, Mingru KONG1, Bingtao HE1, Ziyu GUO1, Ducheng JIN2, Zhaowen QIU1()
Received:
2023-06-19
Revised:
2023-08-17
Accepted:
2023-08-21
Online:
2023-09-18
Published:
2024-07-10
Contact:
Zhaowen QIU
About author:
KONG Zhe, born in 1997, M. S. candidate. His research interests include medical image analysis.Supported by:
孔哲1, 李寒1, 甘少伟1, 孔明茹1, 何冰涛1, 郭子钰1, 金督程2, 邱兆文1()
通讯作者:
邱兆文
作者简介:
孔哲(1997—),男,山东泰安人,硕士研究生,主要研究方向:医学影像分析;基金资助:
CLC Number:
Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module[J]. Journal of Computer Applications, 2024, 44(7): 2216-2224.
孔哲, 李寒, 甘少伟, 孔明茹, 何冰涛, 郭子钰, 金督程, 邱兆文. 基于非对称多解码器和注意力模块的三维肾脏影像结构分割模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2216-2224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060773
网络模型 | 肾脏 | 肿瘤 | 动脉 | 静脉 | 平均值 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | |
Kid-Net[ | 94.3 | 13.10 | 0.66 | 82.7 | 12.04 | 2.42 | 78.0 | 15.15 | 2.91 | 75.4 | 1.82 | 1.19 | 82.6 | 10.50 | 1.79 |
MGANet[ | 95.1 | * | * | 86.4 | * | * | 89.0 | * | * | 81.0 | * | * | 87.9 | * | * |
Unet[ | 94.9 | 12.24 | 0.33 | 82.0 | 5.29 | 3.75 | 80.2 | 2.56 | 2.25 | 73.7 | 1.86 | 0.78 | 82.7 | 5.50 | 1.80 |
Vnet[ | 94.3 | 8.17 | 0.06 | 81.5 | 4.05 | 3.31 | 84.3 | 4.17 | 3.58 | 76.4 | 3.13 | 1.45 | 84.1 | 4.90 | 2.10 |
nnUnet[ | 95.3 | 7.50 | 2.12 | 72.2 | 8.17 | 21.50 | 81.7 | 3.90 | 3.71 | 89.5 | 1.96 | 1.59 | 84.6 | 5.40 | 7.90 |
ResUnet[ | 94.4 | 1.29 | 0.05 | 82.0 | 2.64 | 1.46 | 84.5 | 6.14 | 4.40 | 76.8 | 2.00 | 0.81 | 84.0 | 3.00 | 1.70 |
UNETR[ | 95.1 | 1.94 | 0.87 | 83.8 | 4.74 | 1.99 | 82.2 | 2.05 | 1.98 | 77.3 | 1.81 | 1.13 | 84.6 | 2.63 | 1.49 |
MDAUnet | 96.3 | 1.44 | 0.04 | 89.6 | 2.48 | 1.31 | 83.2 | 2.37 | 2.36 | 87.3 | 0.78 | 0.46 | 89.1 | 1.76 | 1.04 |
Tab. 1 Comparison results of different models for different parts of the segmentation
网络模型 | 肾脏 | 肿瘤 | 动脉 | 静脉 | 平均值 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | DSC/% | HD95/mm | ASD/mm | |
Kid-Net[ | 94.3 | 13.10 | 0.66 | 82.7 | 12.04 | 2.42 | 78.0 | 15.15 | 2.91 | 75.4 | 1.82 | 1.19 | 82.6 | 10.50 | 1.79 |
MGANet[ | 95.1 | * | * | 86.4 | * | * | 89.0 | * | * | 81.0 | * | * | 87.9 | * | * |
Unet[ | 94.9 | 12.24 | 0.33 | 82.0 | 5.29 | 3.75 | 80.2 | 2.56 | 2.25 | 73.7 | 1.86 | 0.78 | 82.7 | 5.50 | 1.80 |
Vnet[ | 94.3 | 8.17 | 0.06 | 81.5 | 4.05 | 3.31 | 84.3 | 4.17 | 3.58 | 76.4 | 3.13 | 1.45 | 84.1 | 4.90 | 2.10 |
nnUnet[ | 95.3 | 7.50 | 2.12 | 72.2 | 8.17 | 21.50 | 81.7 | 3.90 | 3.71 | 89.5 | 1.96 | 1.59 | 84.6 | 5.40 | 7.90 |
ResUnet[ | 94.4 | 1.29 | 0.05 | 82.0 | 2.64 | 1.46 | 84.5 | 6.14 | 4.40 | 76.8 | 2.00 | 0.81 | 84.0 | 3.00 | 1.70 |
UNETR[ | 95.1 | 1.94 | 0.87 | 83.8 | 4.74 | 1.99 | 82.2 | 2.05 | 1.98 | 77.3 | 1.81 | 1.13 | 84.6 | 2.63 | 1.49 |
MDAUnet | 96.3 | 1.44 | 0.04 | 89.6 | 2.48 | 1.31 | 83.2 | 2.37 | 2.36 | 87.3 | 0.78 | 0.46 | 89.1 | 1.76 | 1.04 |
scSE | Scharr滤波 | WHRA | 肾脏 | 肿瘤 | 静脉 | 动脉 | 平均值 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | |||
96.0 | 1.98 | 87.1 | 4.03 | 81.3 | 2.08 | 78.4 | 4.24 | 85.7 | 3.08 | |||
√ | 96.4 | 1.84 | 90.3 | 2.55 | 83.6 | 1.86 | 80.7 | 3.67 | 87.8 | 2.48 | ||
√ | 96.2 | 2.25 | 88.8 | 3.04 | 83.6 | 1.46 | 83.5 | 2.95 | 87.5 | 2.42 | ||
√ | 96.3 | 2.23 | 86.3 | 3.19 | 86.5 | 1.05 | 82.8 | 3.05 | 87.9 | 2.38 | ||
√ | √ | 96.3 | 1.59 | 86.8 | 2.62 | 87.0 | 1.12 | 82.7 | 2.88 | 88.2 | 2.05 | |
√ | √ | 96.0 | 1.98 | 85.1 | 2.83 | 87.7 | 1.07 | 82.4 | 2.85 | 87.8 | 2.18 | |
√ | √ | √ | 96.3 | 1.44 | 89.6 | 2.48 | 87.3 | 0.78 | 83.2 | 2.37 | 89.1 | 1.76 |
Tab. 2 Ablation experiment results
scSE | Scharr滤波 | WHRA | 肾脏 | 肿瘤 | 静脉 | 动脉 | 平均值 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | DSC/% | HD95/mm | |||
96.0 | 1.98 | 87.1 | 4.03 | 81.3 | 2.08 | 78.4 | 4.24 | 85.7 | 3.08 | |||
√ | 96.4 | 1.84 | 90.3 | 2.55 | 83.6 | 1.86 | 80.7 | 3.67 | 87.8 | 2.48 | ||
√ | 96.2 | 2.25 | 88.8 | 3.04 | 83.6 | 1.46 | 83.5 | 2.95 | 87.5 | 2.42 | ||
√ | 96.3 | 2.23 | 86.3 | 3.19 | 86.5 | 1.05 | 82.8 | 3.05 | 87.9 | 2.38 | ||
√ | √ | 96.3 | 1.59 | 86.8 | 2.62 | 87.0 | 1.12 | 82.7 | 2.88 | 88.2 | 2.05 | |
√ | √ | 96.0 | 1.98 | 85.1 | 2.83 | 87.7 | 1.07 | 82.4 | 2.85 | 87.8 | 2.18 | |
√ | √ | √ | 96.3 | 1.44 | 89.6 | 2.48 | 87.3 | 0.78 | 83.2 | 2.37 | 89.1 | 1.76 |
T | DSC/% | T | DSC/% |
---|---|---|---|
0.100 | 88.8 | 0.010 | 89.1 |
0.050 | 88.8 | 0.005 | 88.9 |
Tab. 3 Ablation experimental results of parameter T
T | DSC/% | T | DSC/% |
---|---|---|---|
0.100 | 88.8 | 0.010 | 89.1 |
0.050 | 88.8 | 0.005 | 88.9 |
模型 | 模型参数量/106 | 模型大小/MB |
---|---|---|
无scSE | 30.93 | 122 |
编码器+scSE | 31.07 | 123 |
解码器+对称scSE | 31.45 | 124 |
解码器+非对称scSE | 31.27 | 123 |
Tab. 4 Ablation experimental results of modules affecting parameters
模型 | 模型参数量/106 | 模型大小/MB |
---|---|---|
无scSE | 30.93 | 122 |
编码器+scSE | 31.07 | 123 |
解码器+对称scSE | 31.45 | 124 |
解码器+非对称scSE | 31.27 | 123 |
1 | SHAO P, QIN C, YIN C, et al. Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes [J]. European Urology, 2011, 59(5): 849-855. |
2 | SHAO P, TANG L, LI P, et al. Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy [J]. European Urology, 2012, 62(6): 1001-1008. |
3 | LEVINE M D, SHAHEEN S I. A modular computer vision system for picture segmentation and interpretation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, 3(5): 540-556. |
4 | BALASUBRAMANIAN C, SARAVANAN S, SRINIVASAGAN K G, et al. Automatic segmentation of brain tumor from MR image using region growing technique [J]. Life Science Journal, 2013, 10(2): 2878-2883. |
5 | OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
6 | LEE H S, HONG H, KIM J. Detection and segmentation of small renal masses in contrast-enhanced CT images using texture and context feature classification [C]// Proceedings of the 2017 IEEE 4th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2017: 583-586. |
7 | 段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术, 2005, 31(3): 415-419. |
DUAN R L, LI Q X, LI Y H. Summary of image edge detection [J]. Optical Technique, 2005, 31(3): 415-419. | |
8 | BUKHARI S T, MOHY-UD-DIN H . E 1D3 U-Net for brain tumor segmentation: submission to the RSNA-ASNR-MICCAI BraTS 2021 challenge [C]// Proceedings of the 2021 International MICCAI Brainlesion Workshop. Cham: Springer, 2021: 276-288. |
9 | QIN Y, ZHENG H, GU Y, et al. Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT [J]. IEEE Transactions on Medical Imaging, 2021, 40(6): 1603-1617. |
10 | SHI G, XIAO L, CHEN Y, et al. Marginal loss and exclusion loss for partially supervised multi-organ segmentation [J]. Medical Image Analysis, 2021, 70: 101979. |
11 | ZHOU C, DING C, WANG X, et al. One-pass multi-task networks with cross-task guided attention for brain tumor segmentation [J]. IEEE Transactions on Image Processing, 2020, 29: 4516-4529. |
12 | SHAMSHAD F, KHAN S, ZAMIR S W, et al. Transformers in medical imaging: a survey [J]. Medical Image Analysis, 2023, 88: 102802. |
13 | HELLER N, ISENSEE F, MAIER-HEIN K H, et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge [J]. Medical Image Analysis, 2021, 67: 101821. |
14 | ZHANG Y, WANG Y, HOU F, et al. Cascaded volumetric convolutional network for kidney tumor segmentation from CT volumes [EB/OL]. (2020-05-04) [2023-06-19].. |
15 | WANG C, ODA M, HAYASHI Y, et al. Tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation [J]. Medical Image Analysis, 2020, 60: 101623. |
16 | TAHA A, LO P, LI J, et al. Kid-Net: convolution networks for kidney vessels segmentation from CT-volumes [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 463-471. |
17 | HE Y, YANG G, YANG J, et al. Dense biased networks with deep priori anatomy and hard region adaptation: semi-supervised learning for fine renal artery segmentation [J]. Medical Image Analysis, 2020, 63: 101722. |
18 | HE Y, YANG G, YANG J, et al. Meta grayscale adaptive network for 3D integrated renal structures segmentation [J]. Medical Image Analysis, 2021, 71: 102055. |
19 | TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5229-5238. |
20 | ZHOU L, MENG X, HUANG Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors [J]. Nature Machine Intelligence, 2022, 4: 494-503. |
21 | ZHOU L, LI Z, ZHOU J, et al. A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis [J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2638-2652. |
22 | ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 421-429. |
23 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
24 | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 15th European Conference on Computer Vision. Berlin: Springer, 2018: 3-19. |
25 | PARK J, WOO S, LEE J-Y, et al. BAM: bottleneck Attention module [EB/OL]. (2018-07-20) [2023-06-19].. |
26 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization [EB/OL]. (2019-01-04) [2023-06-19].. |
27 | LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts [EB/OL]. (2017-05-03) [2023-06-19].. |
28 | ABDOLLAHI A, PRADHAN B, ALAMRI A. VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data [J]. IEEE Access, 2020, 8: 179424-179436. |
29 | ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J]. Nature Methods, 2021, 18: 203-211. |
30 | DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114. |
31 | HATAMIZADEH A, TANG Y, NATH V, et al. UNETR: Transformers for 3D medical image segmentation [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1748-1758. |
32 | KONG M, QIN Z, ZHANG P, et al. Study on modified poplar wood powder/polylactic acid high toughness green 3D printing composites [J]. International Journal of Biological Macromolecules, 2023, 228: 311-322. |
[1] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[2] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[3] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[4] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[5] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[6] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[7] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[8] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[9] | Qiaoling HUANG, Bochuan ZHENG, Zicheng DING, Zedong WU. Improved image inpainting network incorporating supervised attention module and cross-stage feature fusion [J]. Journal of Computer Applications, 2024, 44(2): 572-579. |
[10] | Tao LIU, Shihong JU, Yimeng GAO. Small object detection algorithm from drone perspective based on improved YOLOv8n [J]. Journal of Computer Applications, 2024, 44(11): 3603-3609. |
[11] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[12] | Jie LONG, Liang XIE, Haijiao XU. Integrated deep reinforcement learning portfolio model [J]. Journal of Computer Applications, 2024, 44(1): 300-310. |
[13] | Xiang GUO, Wengang JIANG, Yuhang WANG. Encrypted traffic classification method based on improved Inception-ResNet [J]. Journal of Computer Applications, 2023, 43(8): 2471-2476. |
[14] | Yiyu GUO, Luoyu ZHOU, Xinyu LIU, Yao LI. Dangerous goods detection method in elevator scene based on improved attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2295-2302. |
[15] | Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion [J]. Journal of Computer Applications, 2023, 43(7): 2166-2172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||