Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2168-2174.DOI: 10.11772/j.issn.1001-9081.2023070921
• Computer software technology • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE( )
)
												  
						
						
						
					
				
Received:2023-07-11
															
							
																	Revised:2023-09-21
															
							
																	Accepted:2023-09-25
															
							
							
																	Online:2023-10-26
															
							
																	Published:2024-07-10
															
							
						Contact:
								Gang XUE   
													About author:TIAN Runze, born in 2001. His research interests include deep learning, path planning.Supported by:通讯作者:
					薛岗
							作者简介:田润泽(2001—),男,河北邯郸人,主要研究方向:深度学习、路径规划;基金资助:CLC Number:
Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration[J]. Journal of Computer Applications, 2024, 44(7): 2168-2174.
田润泽, 周宇龙, 朱洪, 薛岗. 基于局部信息的服务迁移路径选择算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2168-2174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023070921
| 算法 | |||
|---|---|---|---|
| 本文算法 | 0.32 | 1.72 | 86.2 | 
| 改进DFS算法[ | 3.42 | 2.64 | 68.3 | 
| 改进A*算法[ | 0.27 | 3.10 | 57.6 | 
| MDMPS算法[ | 0.35 | 2.29 | 75.4 | 
| GDSMPS算法[ | 0.41 | 1.97 | 82.3 | 
Tab. 1 Experimental results on total test set
| 算法 | |||
|---|---|---|---|
| 本文算法 | 0.32 | 1.72 | 86.2 | 
| 改进DFS算法[ | 3.42 | 2.64 | 68.3 | 
| 改进A*算法[ | 0.27 | 3.10 | 57.6 | 
| MDMPS算法[ | 0.35 | 2.29 | 75.4 | 
| GDSMPS算法[ | 0.41 | 1.97 | 82.3 | 
| 算法 | ND1(偏移距离20 m) | ND2(偏移距离30 m) | ND3(偏移距离40 m) | ND4(偏移距离50 m) | ND5(偏移距离80 m) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 本文算法 | 87.2 | 1.75 | 86.4 | 1.68 | 85.9 | 1.82 | 85.3 | 1.77 | 82.1 | 1.79 | 
| 改进DFS算法[ | 74.1 | 2.69 | 72.2 | 2.36 | 68.1 | 2.91 | 65.7 | 2.84 | 60.3 | 3.09 | 
| 改进A*算法[ | 57.5 | 3.04 | 56.2 | 2.44 | 54.1 | 3.56 | 51.3 | 3.19 | 48.8 | 3.68 | 
| MDMPS算法[ | 77.2 | 2.11 | 74.6 | 1.82 | 71.3 | 2.28 | 69.1 | 2.51 | 67.3 | 2.60 | 
| GDSMPS算法[ | 83.7 | 1.92 | 80.4 | 2.09 | 77.2 | 2.16 | 75.6 | 2.31 | 74.1 | 2.47 | 
Tab. 2 Experimental results on noisy datasets
| 算法 | ND1(偏移距离20 m) | ND2(偏移距离30 m) | ND3(偏移距离40 m) | ND4(偏移距离50 m) | ND5(偏移距离80 m) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 本文算法 | 87.2 | 1.75 | 86.4 | 1.68 | 85.9 | 1.82 | 85.3 | 1.77 | 82.1 | 1.79 | 
| 改进DFS算法[ | 74.1 | 2.69 | 72.2 | 2.36 | 68.1 | 2.91 | 65.7 | 2.84 | 60.3 | 3.09 | 
| 改进A*算法[ | 57.5 | 3.04 | 56.2 | 2.44 | 54.1 | 3.56 | 51.3 | 3.19 | 48.8 | 3.68 | 
| MDMPS算法[ | 77.2 | 2.11 | 74.6 | 1.82 | 71.3 | 2.28 | 69.1 | 2.51 | 67.3 | 2.60 | 
| GDSMPS算法[ | 83.7 | 1.92 | 80.4 | 2.09 | 77.2 | 2.16 | 75.6 | 2.31 | 74.1 | 2.47 | 
| 算法 | LPD1 | LPD2 | LPD3 | |||
|---|---|---|---|---|---|---|
| 本文算法 | 86.8 | 2.07 | 84.7 | 2.68 | 82.6 | 3.56 | 
| 改进DFS算法[ | 74.1 | 2.77 | 71.3 | 3.67 | 66.9 | 5.72 | 
| 改进A*算法[ | 57.5 | 3.82 | 53.2 | 5.43 | 44.4 | 7.27 | 
| MDMPS算法[ | 77.2 | 2.31 | 73.1 | 2.89 | 69.8 | 4.12 | 
| GDSMPS算法[ | 83.6 | 2.19 | 80.2 | 3.01 | 74.3 | 3.86 | 
Tab. 3 Experimental results on long-path datasets
| 算法 | LPD1 | LPD2 | LPD3 | |||
|---|---|---|---|---|---|---|
| 本文算法 | 86.8 | 2.07 | 84.7 | 2.68 | 82.6 | 3.56 | 
| 改进DFS算法[ | 74.1 | 2.77 | 71.3 | 3.67 | 66.9 | 5.72 | 
| 改进A*算法[ | 57.5 | 3.82 | 53.2 | 5.43 | 44.4 | 7.27 | 
| MDMPS算法[ | 77.2 | 2.31 | 73.1 | 2.89 | 69.8 | 4.12 | 
| GDSMPS算法[ | 83.6 | 2.19 | 80.2 | 3.01 | 74.3 | 3.86 | 
| 1 | ALI B, GREGORY M A, LI S. Multi-access edge computing architecture, data security and privacy: a review [J]. IEEE Access, 2021, 9: 18706-18721. | 
| 2 | CRUZ P, ACHIR N, VIANA A C. On the edge of the deployment: a survey on multi-access edge computing [J]. ACM Computing Surveys, 2022, 55(5): No.99. | 
| 3 | LIANG B, GREGORY M A, LI S. Multi-access edge computing fundamentals, services, enablers and challenges: a complete survey [J]. Journal of Network and Computer Applications, 2022, 199: 103308. | 
| 4 | 曹腾飞,刘延亮,王晓英.基于改进深度强化学习的边缘计算服务卸载算法[J].计算机应用, 2023, 43(5): 1543-1550. | 
| CAO T F, LIU Y L, WANG X Y. Edge computing and service offloading algorithm based on improved deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(5): 1543-1550. | |
| 5 | LI C, ZHANG Q, LUO Y. A jointly non-cooperative game-based offloading and dynamic service migration approach in mobile edge computing [J]. Knowledge and Information Systems, 2023, 65(5): 2187-2223. | 
| 6 | LIU J, ANAVATTI S, GARRATT M, et al. Modified continuous ant colony optimisation for multiple unmanned ground vehicle path planning [J]. Expert Systems with Applications, 2022, 196: 116605. | 
| 7 | WANG H, LI G, HOU J, et al. A path planning method for underground intelligent vehicles based on an improved RRT* algorithm [J]. Electronics, 2022, 11(3): 294. | 
| 8 | ZHAO C, ZHU Y, DU Y, et al. A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17910-17921. | 
| 9 | GAO D, ZHU Y, ZHANG J, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data [J]. Ocean Engineering, 2021, 228: 108956. | 
| 10 | GUO H, MENG Q, CAO D, et al. Vehicle trajectory prediction method coupled with ego vehicle motion trend under dual attention mechanism [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2507516. | 
| 11 | GAO H, QIN Y, HU C, et al. An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(9): 6468-6479. | 
| 12 | 袁景凌,毛慧华,王娜娜,等.移动边缘计算中资源受限的动态服务部署策略[J].计算机应用, 2022, 42(6): 1662-1667. | 
| YUAN J L, MAO H H, WANG N N, et al. Dynamic service deployment strategy in resource constrained mobile edge computing [J]. Journal of Computer Applications, 2022, 42(6): 1662-1667. | |
| 13 | 郑赛,李天瑞,黄维.面向通信成本优化的联邦学习算法[J].计算机应用, 2023, 43(1): 1-7. | 
| ZHENG S, LI T R, HUANG W. Federated learning algorithm for communication cost optimization [J]. Journal of Computer Applications, 2023, 43(1): 1-7. | |
| 14 | EWEES A A, AL-QANESS M A A, ABUALIGAH L, et al. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting [J]. Energy Conversion and Management, 2022, 268: 116022. | 
| 15 | MAI G, JANOWICZ K, ZHU R, et al. Geographic question answering: challenges, uniqueness, classification, and future directions [J]. AGILE: GIScience Series, 2021, 2: No.8. | 
| 16 | LI C, CAI Q, LUO Y. Low-latency edge cooperation caching based on base station cooperation in SDN based MEC [J]. Expert Systems with Applications, 2022, 191: 116252. | 
| 17 | 郭展羽,张志明,贺兰山,等.过必经点集且具有额外硬约束的最短路径算法[J].计算机工程与应用, 2022, 58(18): 297-303. | 
| GUO Z Y, ZHANG Z M, HE L S, et al. Shortest path algorithm through necessary nodes with extra hard constraints [J]. Computer Engineering and Applications, 2022, 58(18): 297-303. | |
| 18 | 王洪斌,尹鹏衡,郑维,等.基于改进的A*算法与动态窗口法的移动机器人路径规划[J].机器人, 2020, 42(3): 346-353. | 
| WANG H B, YIN P H, ZHENG W, et al. Mobile robot path planning based on improved A* algorithm and dynamic window method [J]. Robot, 2020, 42(3): 346-353. | |
| 19 | ANWAR M R, WANG S, AKRAM M F, et al. 5G-enabled MEC: a distributed traffic steering for seamless service migration of Internet of vehicles [J]. IEEE Internet of Things Journal, 2022, 9(1): 648-661. | 
| 20 | PU C, YAO S, CHEN D, et al. Grid division-based service migration path selection method in edge computing environment [C]// Proceedings of the 2022 4th International Conference on Communications, Information System and Computer Engineering. Piscataway: IEEE, 2022: 541-548. | 
| 21 | TSAI T J. Segmental DTW: a parallelizable alternative to dynamic time warping [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 106-110. | 
| [1] | Hailin XIAO, Tianyi HUANG, Qiuxiang DAI, Yuejun ZHANG, Zhongshan ZHANG. Safe reinforcement learning method for decision making of autonomous lane changing based on trajectory prediction [J]. Journal of Computer Applications, 2024, 44(9): 2958-2963. | 
| [2] | Peiqian LIU, Shuilian WANG, Zihao SHEN, Hui WANG. Location privacy protection algorithm based on trajectory perturbation and road network matching [J]. Journal of Computer Applications, 2024, 44(5): 1546-1554. | 
| [3] | Yu WANG, Zhihui GUAN, Yuanpeng LI. Distributed UAV cluster pursuit decision-making based on trajectory prediction and MADDPG [J]. Journal of Computer Applications, 2024, 44(11): 3623-3628. | 
| [4] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. | 
| [5] | Tao PENG, Yalong KANG, Feng YU, Zili ZHANG, Junping LIU, Xinrong HU, Ruhan HE, Li LI. Pedestrian trajectory prediction based on multi-head soft attention graph convolutional network [J]. Journal of Computer Applications, 2023, 43(3): 736-743. | 
| [6] | Yijian ZHAO, Li LIN, Qianqian WANG, Peng WEN, Dong YANG. Trajectory prediction of sea targets based on geodetic distance similarity calculation [J]. Journal of Computer Applications, 2023, 43(11): 3594-3598. | 
| [7] | Yuli CHEN, Qiang TONG, Tongtong CHEN, Shoulu HOU, Xiulei LIU. Short-term trajectory prediction model of aircraft based on attention mechanism and generative adversarial network [J]. Journal of Computer Applications, 2022, 42(10): 3292-3299. | 
| [8] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. | 
| [9] | LI Xujuan, PI Jianyong, HUANG Feixiang, JIA Haipeng. Self-generated deep neural network based 4D trajectory prediction [J]. Journal of Computer Applications, 2021, 41(5): 1492-1499. | 
| [10] | FU Qianhui, LI Qingkui, FU Jingnan, WANG Yu. Dense crowd counting model based on spatial dimensional recurrent perception network [J]. Journal of Computer Applications, 2021, 41(2): 544-549. | 
| [11] | ZHANG Xiaohan, FENG Aimin. Short-term traffic flow prediction based on empirical mode decomposition and long short-term memory neural network [J]. Journal of Computer Applications, 2021, 41(1): 225-230. | 
| [12] | WANG Kun, ZHENG Yi, FANG Shuya, LIU Shouyin. Long text aspect-level sentiment analysis based on text filtering and improved BERT [J]. Journal of Computer Applications, 2020, 40(10): 2838-2844. | 
| [13] | ZHAO Hong, WANG Le, WANG Weijie. Text sentiment analysis based on serial hybrid model of bi-directional long short-term memory and convolutional neural network [J]. Journal of Computer Applications, 2020, 40(1): 16-22. | 
| [14] | GAO Jian, MAO Yingchi, LI Zhitao. Trajectory prediction based on Gauss mixture time series model [J]. Journal of Computer Applications, 2019, 39(8): 2261-2270. | 
| [15] | KIM Chungsong, LI Dong. Deep learning neural network model for consumer preference prediction [J]. Journal of Computer Applications, 2019, 39(7): 1888-1893. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||