Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3292-3299.DOI: 10.11772/j.issn.1001-9081.2021081387
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Yuli CHEN1,2, Qiang TONG1,2, Tongtong CHEN3, Shoulu HOU1, Xiulei LIU1,2
Received:
2021-08-03
Revised:
2021-11-12
Accepted:
2021-11-21
Online:
2022-01-07
Published:
2022-10-10
Contact:
Qiang TONG
About author:
CHEN Yul, born in 1994, M. S. candidate. His research interests include machine learning, data mining, time series prediction.Supported by:
陈玉立1,2, 佟强1,2, 谌彤童3, 侯守璐1, 刘秀磊1,2
通讯作者:
佟强
作者简介:
第一联系人:陈玉立(1994—),男,河南周口人,硕士研究生,主要研究方向:机器学习、数据挖掘、时间序列预测基金资助:
CLC Number:
Yuli CHEN, Qiang TONG, Tongtong CHEN, Shoulu HOU, Xiulei LIU. Short-term trajectory prediction model of aircraft based on attention mechanism and generative adversarial network[J]. Journal of Computer Applications, 2022, 42(10): 3292-3299.
陈玉立, 佟强, 谌彤童, 侯守璐, 刘秀磊. 基于注意力机制和生成对抗网络的飞行器短期航迹预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3292-3299.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081387
发生时间 | 飞行器代码 | 纬度/(°) | 经度/(°) | 高度/m |
---|---|---|---|---|
1599440410 | 06a088 | 29.624 16 | -95.625 43 | 1 874.52 |
1599440420 | 06a088 | 29.631 89 | -95.612 77 | 1 866.90 |
1599440430 | 06a088 | 29.640 10 | -95.600 80 | 1 836.42 |
1599440440 | 06a088 | 29.648 34 | -95.590 29 | 1 783.08 |
1599440450 | 06a088 | 29.657 54 | -95.579 70 | 1 714.50 |
1599440460 | 06a088 | 29.665 69 | -95.570 64 | 1 638.30 |
Tab. 1 Samples of datasets
发生时间 | 飞行器代码 | 纬度/(°) | 经度/(°) | 高度/m |
---|---|---|---|---|
1599440410 | 06a088 | 29.624 16 | -95.625 43 | 1 874.52 |
1599440420 | 06a088 | 29.631 89 | -95.612 77 | 1 866.90 |
1599440430 | 06a088 | 29.640 10 | -95.600 80 | 1 836.42 |
1599440440 | 06a088 | 29.648 34 | -95.590 29 | 1 783.08 |
1599440450 | 06a088 | 29.657 54 | -95.579 70 | 1 714.50 |
1599440460 | 06a088 | 29.665 69 | -95.570 64 | 1 638.30 |
模型 | ADE | FDE | MDE |
---|---|---|---|
BP | 0.022 075 | 0.021 804 | 0.085 027 |
LSTM | 0.082 516 | 0.087 059 | 0.487 775 |
GRU | 0.064 143 | 0.077 773 | 0.382 983 |
SGAN | 0.018 791 | 0.028 391 | 0.048 737 |
ATGAN | 0.014116 | 0.020845 | 0.038082 |
Tab. 2 Prediction errors of different models on dataset during all phases
模型 | ADE | FDE | MDE |
---|---|---|---|
BP | 0.022 075 | 0.021 804 | 0.085 027 |
LSTM | 0.082 516 | 0.087 059 | 0.487 775 |
GRU | 0.064 143 | 0.077 773 | 0.382 983 |
SGAN | 0.018 791 | 0.028 391 | 0.048 737 |
ATGAN | 0.014116 | 0.020845 | 0.038082 |
模型 | ADE | FDE | MDE |
---|---|---|---|
BP | 0.018 177 | 0.017 546 | 0.119 078 |
LSTM | 0.016 218 | 0.015 262 | 0.082 700 |
GRU | 0.012 724 | 0.011 947 | 0.065 207 |
SGAN | 0.008 729 | 0.014 992 | 0.047 028 |
ATGAN | 0.006984 | 0.011930 | 0.038422 |
Tab. 3 Prediction errors of different models on dataset during climb phase
模型 | ADE | FDE | MDE |
---|---|---|---|
BP | 0.018 177 | 0.017 546 | 0.119 078 |
LSTM | 0.016 218 | 0.015 262 | 0.082 700 |
GRU | 0.012 724 | 0.011 947 | 0.065 207 |
SGAN | 0.008 729 | 0.014 992 | 0.047 028 |
ATGAN | 0.006984 | 0.011930 | 0.038422 |
模型 | 训练时间/h | 预测时间/ms | 模型 | 训练时间/h | 预测时间/ms |
---|---|---|---|---|---|
BP | 1.03 | 0.02 | SGAN | 13.34 | 0.79 |
LSTM | 1.09 | 0.13 | ATGAN | 12.15 | 0.78 |
GRU | 1.10 | 0.08 |
Tab. 4 Time comparison results of different models on dataset during all phases
模型 | 训练时间/h | 预测时间/ms | 模型 | 训练时间/h | 预测时间/ms |
---|---|---|---|---|---|
BP | 1.03 | 0.02 | SGAN | 13.34 | 0.79 |
LSTM | 1.09 | 0.13 | ATGAN | 12.15 | 0.78 |
GRU | 1.10 | 0.08 |
1 | HAO S Q, CHENG S W, ZHANG Y P. A multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based operation[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1579-1593. 10.1016/j.cja.2018.04.017 |
2 | SCHUSTER W. Trajectory prediction for future air traffic management — complex manoeuvres and taxiing[J]. The Aeronautical Journal, 2015, 119(1212): 121-143. 10.1017/s0001924000010307 |
3 | ZHANG J F, LIU J, HU R, et al. Online four dimensional trajectory prediction method based on aircraft intent updating[J]. Aerospace Science and Technology, 2018, 77: 774-787. 10.1016/j.ast.2018.03.037 |
4 | ZHOU Z J, CHEN J L, SHEN B B, et al. A trajectory prediction method based on aircraft motion model and grey theory[C]// Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2016: 1523-1527. 10.1109/imcec.2016.7867472 |
5 | KANESHIGE J, BENAVIDES J, SHARMA S, et al. Implementation of a trajectory prediction function for trajectory based operations[C]// Proceedings of the 2014 AIAA Atmospheric Flight Mechanics Conference. Reston, VA: AIAA, 2014: No.2198. 10.2514/6.2014-2198 |
6 | THIPPHAVONG D P, SCHULTZ C A, LEE A G, et al. Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1): 15-24. 10.2514/1.58508 |
7 | 王涛波,黄宝军. 基于改进卡尔曼滤波的四维飞行航迹预测模型[J]. 计算机应用, 2014, 34(6): 1812-1815. 10.11772/j.issn.1001-9081.2014.06.1812 |
WANG T B, HUANG B J. 4D flight trajectory prediction model based on improved Kalman filter[J]. Journal of Computer Applications, 2014, 34(6): 1812-1815. 10.11772/j.issn.1001-9081.2014.06.1812 | |
8 | LYMPEROPOULOS I, LYGEROS J. Sequential Monte Carlo methods for multi-aircraft trajectory prediction in air traffic management[J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(10): 830-849. 10.1002/acs.1174 |
9 | 谢丽,张军峰,隋东,等. 基于交互式多模型滤波算法的航迹预测[J]. 航空计算技术, 2012, 42(5): 68-70, 74. 10.3969/j.issn.1671-654X.2012.05.017 |
XIE L, ZHANG J F, SUI D, et al. Aircraft trajectory prediction based on interacting multiple model filtering algorithm[J]. Aeronautical Computing Technique, 2012, 42(5): 68-70, 74. 10.3969/j.issn.1671-654X.2012.05.017 | |
10 | WANG Z J, ZHANG X J, CAI K Q. An interacting multiple model based aircraft trajectory conformance prediction method[C]// Proceedings of the IEEE/AIAA 37th Digital Avionics Systems Conference. Piscataway: IEEE, 2018: 1-9. 10.1109/dasc.2018.8569251 |
11 | MAEDER U, MORARI M, BAUMGARTNER T I. Trajectory prediction for light aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1112-1119. 10.2514/1.52124 |
12 | 汤新民,李腾,陈强超,等. 基于交互式多模型的短期4D航迹预测[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1):39-45. 10.3963/j.issn.2095-3844.2020.01.008 |
TANG X M, LI T, CHEN Q C, et al. Short-term 4D trajectory prediction based on interactive multi-models[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2020, 44(1):39-45. 10.3963/j.issn.2095-3844.2020.01.008 | |
13 | DE LEEGE A M P, VAN PAASSEN M M, MULDER M. A machine learning approach to trajectory prediction[C]// Proceedings of the 2013 AIAA Guidance, Navigation, and Control Conference. Reston, VA: AIAA, 2013: No.4782. 10.2514/6.2013-4782 |
14 | TASTAMBEKOV K, PUECHMOREL S, DELAHAYE D, et al. Aircraft trajectory forecasting using local functional regression in Sobolev space[J]. Transportation Research Part C: Emerging Technologies, 2014, 39: 1-22. 10.1016/j.trc.2013.11.013 |
15 | 王涛波,黄宝军. 基于4D航迹的模糊聚类分析[J]. 交通信息与安全, 2013, 31(6):38-42. 10.3963/j.issn.1674-4861.2013.06.008 |
WANG T B, HUANG B J. Fuzzy cluster analysis of 4D trajectory based on ADS-B[J]. Journal of Transport Information and Safety, 2013, 31(6): 38-42. 10.3963/j.issn.1674-4861.2013.06.008 | |
16 | GEORGIOU H, PELEKIS N, SIDERIDIS S, et al. Semantic-aware aircraft trajectory prediction using flight plans[J]. International Journal of Data Science and Analytics, 2020, 9(2): 215-228. 10.1007/s41060-019-00182-4 |
17 | 马兰,高永胜. 基于ADS-B数据挖掘的4D航迹预测方法[J]. 中国民航大学学报, 2019, 37(4):1-4. 10.3969/j.issn.1674-5590.2019.04.001 |
MA L, GAO Y S. Four-dimensional trajectory prediction method based on ADS-B data mining[J]. Journal of Civil Aviation University of China, 2019, 37(4): 1-4. 10.3969/j.issn.1674-5590.2019.04.001 | |
18 | 钱夔,周颖,杨柳静,等. 基于BP神经网络的空中目标航迹预测模型[J]. 指挥信息系统与技术, 2017, 8(3): 54-58. 10.15908/j.cnki.cist.2017.03.010 |
QIAN K, ZHOU Y, YANG L J, et al. Aircraft target track prediction model based on BP neural network[J]. Command Information System and Technology, 2017, 8(3): 54-58. 10.15908/j.cnki.cist.2017.03.010 | |
19 | WU Z J, TIAN S, MA L. A 4D trajectory prediction model based on the BP neural network[J]. Journal of Intelligent Systems, 2020, 29(1): 1545-1557. 10.1515/jisys-2019-0077 |
20 | NAESSENS H, PHILIP T, PIATEK M, et al. Predicting flight routes with a deep neural network in the operational air traffic flow and capacity management system[EB/OL]. (2017-12-17) [2021-05-25].. |
21 | SHI Z Y, XU M, PAN Q, et al. LSTM-based flight trajectory prediction[C]// Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-8. 10.1109/ijcnn.2018.8489734 |
22 | PANG Y T, XU N, LIU Y M. Aircraft trajectory prediction using LSTM neural network with embedded convolutional layer[C]// Proceedings of the 11th Annual Conference of the Prognostics and Health Management Society. [S.l.]: PHM Society, 2019: No.849. 10.36001/phmconf.2019.v11i1.849 |
23 | HAN P, YUE J C, FANG C, et al. Short-term 4D trajectory prediction based on LSTM neural network[C]// Proceedings of the SPIE 11427, 2nd Target Recognition and Artificial Intelligence Summit Forum International Society for Optics and Photonics. Bellingham, WA: SPIE, 2020: No.114270M. 10.1117/12.2550425 |
24 | 张宏鹏,黄长强,轩永波,等. 用门控循环单元实时预测空战飞行轨迹[J]. 系统工程与电子技术, 2020, 42(11): 2546-2552. 10.3969/j.issn.1001-506X.2020.11.17 |
ZHANG H P, HUANG C Q, XUAN Y B, et al. Real-time prediction of air combat flight trajectory using GRU[J]. Systems Engineering and Electronics, 2020, 42(11): 2546-2552. 10.3969/j.issn.1001-506X.2020.11.17 | |
25 | BAKLACIOGLU T, CAVCAR M. Aero-propulsive modelling for climb and descent trajectory prediction of transport aircraft using genetic algorithms[J]. The Aeronautical Journal, 2014, 118(1199): 65-79. 10.1017/s0001924000008939 |
26 | ZHANG Z X, YANG R N, FANG Y H. LSTM network based on antlion optimization and its application in flight trajectory prediction[C]// Proceedings of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2018: 1658-1662. 10.1109/imcec.2018.8469476 |
27 | QIAO S J, SHEN D Y, WANG X T, et al. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 284-296. 10.1109/tits.2014.2331758 |
28 | 石庆研,岳聚财,韩萍,等. 基于LSTM-ARIMA模型的短期航班飞行轨迹预测[J]. 信号处理, 2019, 35(12): 2000-2009. |
SHI Q Y, YUE J C, HAN P, et al. Short-term flight trajectory prediction based on LSTM-ARIMA model[J]. Journal of Signal Processing, 2019, 35(12): 2000-2009. | |
29 | MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8: 134668-134680. 10.1109/access.2020.3010963 |
30 | XU Z F, ZENG W L, CHU X, et al. Multi-aircraft trajectory collaborative prediction based on social long short-term memory network[J]. Aerospace, 2021, 8(4): No.115. 10.3390/aerospace8040115 |
31 | ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266. 10.1109/access.2020.3016289 |
32 | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2204-2212. |
33 | FERNANDO T, DENMAN S, SRIDHARAN S, et al. Soft + Hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection[J]. Neural Networks, 2018, 108: 466-478. 10.1016/j.neunet.2018.09.002 |
34 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. 10.1145/3422622 |
35 | GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264. 10.1109/cvpr.2018.00240 |
36 | SCHÄFER M, STROHMEIER M, LENDERS V, et al. Bringing up OpenSky: a large-scale ADS-B sensor network for research[C]// Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. Piscataway: IEEE, 2014: 83-94. 10.1109/ipsn.2014.6846743 |
37 | LIN Y, LI Q, GUO D Y, et al. Tensor completion-based trajectory imputation approach in air traffic control[J]. Aerospace Science and Technology, 2021, 114: No.106754. 10.1016/j.ast.2021.106754 |
38 | 权波,杨博辰,胡可奇,等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(11A):126-131. 10.11896/j.issn.1002-137X.2018.11A.022 |
QUAN B, YANG B C, HU K Q, et al. Prediction model of ship trajectory based on LSTM[J]. Computer Science, 2018, 45(11A):126-131. 10.11896/j.issn.1002-137X.2018.11A.022 | |
39 | YANG T, NAN Z X, ZHANG H, et al. Traffic agent trajectory prediction using social convolution and attention mechanism[C]// Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 278-283. 10.1109/iv47402.2020.9304645 |
40 | BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]// Proceedings of the COMPSTAT’2010: 19th International Conference on Computational Statistics. Berlin: Physica-Verlag HD, 2010: 177-186. 10.1007/978-3-7908-2604-3_16 |
41 | ZHOU J, WANG H D, WEI J L, et al. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects[J]. Optics Express, 2019, 27(22): 32210-32216. 10.1364/oe.27.032210 |
42 | DE OLIVEIRA L S, GRUETZMACHER S B, TEIXEIRA J P. COVID-19 time series prediction[J]. Procedia Computer Science, 2021, 181:973-980. 10.1016/j.procs.2021.01.254 |
43 | PATACCHIOLA M, CANGELOSI A. Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods[J]. Pattern Recognition, 2017, 71:132-143. 10.1016/j.patcog.2017.06.009 |
44 | MADSEN P T. Marine mammals and noise: problems with root mean square sound pressure levels for transients[J]. The Journal of the Acoustical Society of America, 2005, 117(6): 3952-3957. 10.1121/1.1921508 |
45 | YU H, JIN R, YANG S. On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 7184-7193. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Hailin XIAO, Tianyi HUANG, Qiuxiang DAI, Yuejun ZHANG, Zhongshan ZHANG. Safe reinforcement learning method for decision making of autonomous lane changing based on trajectory prediction [J]. Journal of Computer Applications, 2024, 44(9): 2958-2963. |
[4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[10] | Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration [J]. Journal of Computer Applications, 2024, 44(7): 2168-2174. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[13] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[14] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||