Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 736-743.DOI: 10.11772/j.issn.1001-9081.2022020207
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                                                                                    Tao PENG1,2,3, Yalong KANG2,3, Feng YU1,3( ), Zili ZHANG2,3, Junping LIU2,3, Xinrong HU2,3, Ruhan HE1,3, Li LI1,2
), Zili ZHANG2,3, Junping LIU2,3, Xinrong HU2,3, Ruhan HE1,3, Li LI1,2
												  
						
						
						
					
				
Received:2022-02-24
															
							
																	Revised:2022-05-17
															
							
																	Accepted:2022-05-19
															
							
							
																	Online:2022-08-16
															
							
																	Published:2023-03-10
															
							
						Contact:
								Feng YU   
													About author:PENG Tao, born in 1981, Ph. D., professor. His research interests include data reduction, pattern recognition, network security.Supported by:
        
                   
            彭涛1,2,3, 康亚龙2,3, 余锋1,3( ), 张自力2,3, 刘军平2,3, 胡新荣2,3, 何儒汉1,3, 李丽1,2
), 张自力2,3, 刘军平2,3, 胡新荣2,3, 何儒汉1,3, 李丽1,2
                  
        
        
        
        
    
通讯作者:
					余锋
							作者简介:彭涛(1981—),男,湖北武汉人,教授,博士,CCF会员,主要研究方向:数据简化、模式识别、网络安全基金资助:CLC Number:
Tao PENG, Yalong KANG, Feng YU, Zili ZHANG, Junping LIU, Xinrong HU, Ruhan HE, Li LI. Pedestrian trajectory prediction based on multi-head soft attention graph convolutional network[J]. Journal of Computer Applications, 2023, 43(3): 736-743.
彭涛, 康亚龙, 余锋, 张自力, 刘军平, 胡新荣, 何儒汉, 李丽. 基于多头软注意力图卷积网络的行人轨迹预测[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 736-743.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020207
| 算法 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| S-LSTM | 1.09 | 2.35 | 0.79 | 1.76 | 0.67 | 1.40 | 0.47 | 1.00 | 0.56 | 1.17 | 0.72 | 1.54 | 
| S-GAN | 0.87 | 1.62 | 0.67 | 1.37 | 0.76 | 1.52 | 0.35 | 0.68 | 0.42 | 0.84 | 0.61 | 1.21 | 
| SoPhie | 0.70 | 1.43 | 0.76 | 1.67 | 0.54 | 1.24 | 0.30 | 0.63 | 0.38 | 0.78 | 0.51 | 1.15 | 
| PITF | 0.73 | 1.65 | 0.30 | 0.59 | 0.60 | 1.27 | 0.38 | 0.81 | 0.31 | 0.68 | 0.46 | 1.00 | 
| S-BIGAT | 0.69 | 1.29 | 0.49 | 1.01 | 0.55 | 1.32 | 0.30 | 0.62 | 0.36 | 0.75 | 0.48 | 1.00 | 
| GAT | 0.68 | 1.29 | 0.68 | 1.40 | 0.57 | 1.29 | 0.29 | 0.60 | 0.37 | 0.75 | 0.52 | 1.07 | 
| SSTGCNN | 0.64 | 1.11 | 0.49 | 0.85 | 0.44 | 0.79 | 0.34 | 0.53 | 0.30 | 0.48 | 0.44 | 0.75 | 
| RSBG | 0.80 | 1.53 | 0.33 | 0.64 | 0.59 | 1.25 | 0.40 | 0.86 | 0.30 | 0.65 | 0.48 | 0.99 | 
| STAR | 0.56 | 1.11 | 0.26 | 0.50 | 0.52 | 1.15 | 0.41 | 0.90 | 0.31 | 0.71 | 0.41 | 0.87 | 
| SOPM | 0.61 | 1.27 | 0.40 | 0.81 | 0.34 | 0.68 | 0.23 | 0.49 | 0.21 | 0.45 | 0.36 | 0.74 | 
| SA-GAN | 0.72 | 1.28 | 0.50 | 1.01 | 0.58 | 1.19 | 0.42 | 0.83 | 0.39 | 0.85 | 0.52 | 1.03 | 
| TP-GCN | 0.74 | 1.24 | 0.28 | 0.51 | 0.50 | 1.07 | 0.33 | 0.71 | 0.28 | 0.61 | 0.43 | 0.83 | 
| SGCN | 0.63 | 1.03 | 0.32 | 0.55 | 0.37 | 0.70 | 0.29 | 0.53 | 0.25 | 0.45 | 0.37 | 0.65 | 
| 本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
Tab. 1 ADE, FDE indicators of different algorithms
| 算法 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| S-LSTM | 1.09 | 2.35 | 0.79 | 1.76 | 0.67 | 1.40 | 0.47 | 1.00 | 0.56 | 1.17 | 0.72 | 1.54 | 
| S-GAN | 0.87 | 1.62 | 0.67 | 1.37 | 0.76 | 1.52 | 0.35 | 0.68 | 0.42 | 0.84 | 0.61 | 1.21 | 
| SoPhie | 0.70 | 1.43 | 0.76 | 1.67 | 0.54 | 1.24 | 0.30 | 0.63 | 0.38 | 0.78 | 0.51 | 1.15 | 
| PITF | 0.73 | 1.65 | 0.30 | 0.59 | 0.60 | 1.27 | 0.38 | 0.81 | 0.31 | 0.68 | 0.46 | 1.00 | 
| S-BIGAT | 0.69 | 1.29 | 0.49 | 1.01 | 0.55 | 1.32 | 0.30 | 0.62 | 0.36 | 0.75 | 0.48 | 1.00 | 
| GAT | 0.68 | 1.29 | 0.68 | 1.40 | 0.57 | 1.29 | 0.29 | 0.60 | 0.37 | 0.75 | 0.52 | 1.07 | 
| SSTGCNN | 0.64 | 1.11 | 0.49 | 0.85 | 0.44 | 0.79 | 0.34 | 0.53 | 0.30 | 0.48 | 0.44 | 0.75 | 
| RSBG | 0.80 | 1.53 | 0.33 | 0.64 | 0.59 | 1.25 | 0.40 | 0.86 | 0.30 | 0.65 | 0.48 | 0.99 | 
| STAR | 0.56 | 1.11 | 0.26 | 0.50 | 0.52 | 1.15 | 0.41 | 0.90 | 0.31 | 0.71 | 0.41 | 0.87 | 
| SOPM | 0.61 | 1.27 | 0.40 | 0.81 | 0.34 | 0.68 | 0.23 | 0.49 | 0.21 | 0.45 | 0.36 | 0.74 | 
| SA-GAN | 0.72 | 1.28 | 0.50 | 1.01 | 0.58 | 1.19 | 0.42 | 0.83 | 0.39 | 0.85 | 0.52 | 1.03 | 
| TP-GCN | 0.74 | 1.24 | 0.28 | 0.51 | 0.50 | 1.07 | 0.33 | 0.71 | 0.28 | 0.61 | 0.43 | 0.83 | 
| SGCN | 0.63 | 1.03 | 0.32 | 0.55 | 0.37 | 0.70 | 0.29 | 0.53 | 0.25 | 0.45 | 0.37 | 0.65 | 
| 本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
| 算法 | 参数量/103 | 推理时间/s | 
|---|---|---|
| S-LSTM | 264.000 | 1.178 9 | 
| SR-LSTM | 64.900 | 0.157 8 | 
| S-GAN | 46.300 | 0.096 8 | 
| PITF | 360.300 | 0.114 5 | 
| SSTGCNN | 7.600 | 0.002 0 | 
| SGCN | 25.369 | 0.003 0 | 
| 本文算法 | 18.184 | 0.003 0 | 
Tab.2 Parameters and reasoning time of algorithms
| 算法 | 参数量/103 | 推理时间/s | 
|---|---|---|
| S-LSTM | 264.000 | 1.178 9 | 
| SR-LSTM | 64.900 | 0.157 8 | 
| S-GAN | 46.300 | 0.096 8 | 
| PITF | 360.300 | 0.114 5 | 
| SSTGCNN | 7.600 | 0.002 0 | 
| SGCN | 25.369 | 0.003 0 | 
| 本文算法 | 18.184 | 0.003 0 | 
| 模块 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| MS ATT | 0.64 | 0.92 | 0.29 | 0.42 | 0.37 | 0.72 | 0.27 | 0.49 | 0.24 | 0.42 | 0.36 | 0.60 | 
| Involution | 0.65 | 1.03 | 0.25 | 0.42 | 0.37 | 0.64 | 0.28 | 0.46 | 0.23 | 0.40 | 0.36 | 0.59 | 
| 本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
Tab. 3 Ablation experimental results of different modules
| 模块 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| MS ATT | 0.64 | 0.92 | 0.29 | 0.42 | 0.37 | 0.72 | 0.27 | 0.49 | 0.24 | 0.42 | 0.36 | 0.60 | 
| Involution | 0.65 | 1.03 | 0.25 | 0.42 | 0.37 | 0.64 | 0.28 | 0.46 | 0.23 | 0.40 | 0.36 | 0.59 | 
| 本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
| ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| 0.00 | 0.63 | 1.00 | 0.35 | 0.65 | 0.39 | 0.72 | 0.28 | 0.51 | 0.24 | 0.44 | 0.38 | 0.66 | 
| 0.25 | 0.66 | 1.12 | 0.31 | 0.54 | 0.38 | 0.72 | 0.27 | 0.46 | 0.24 | 0.42 | 0.37 | 0.65 | 
| 0.50 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
| 0.75 | 0.68 | 1.30 | 0.32 | 0.57 | 0.38 | 0.70 | 0.28 | 0.50 | 0.23 | 0.43 | 0.38 | 0.70 | 
| 1.00 | 0.70 | 1.41 | 0.34 | 0.61 | 0.38 | 0.72 | 0.27 | 0.48 | 0.23 | 0.41 | 0.38 | 0.73 | 
Tab. 4 ADE/FDE indicators of ablation experiments of different ε
| ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
| 0.00 | 0.63 | 1.00 | 0.35 | 0.65 | 0.39 | 0.72 | 0.28 | 0.51 | 0.24 | 0.44 | 0.38 | 0.66 | 
| 0.25 | 0.66 | 1.12 | 0.31 | 0.54 | 0.38 | 0.72 | 0.27 | 0.46 | 0.24 | 0.42 | 0.37 | 0.65 | 
| 0.50 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 | 
| 0.75 | 0.68 | 1.30 | 0.32 | 0.57 | 0.38 | 0.70 | 0.28 | 0.50 | 0.23 | 0.43 | 0.38 | 0.70 | 
| 1.00 | 0.70 | 1.41 | 0.34 | 0.61 | 0.38 | 0.72 | 0.27 | 0.48 | 0.23 | 0.41 | 0.38 | 0.73 | 
| 1 | LARGE F, VASQUEZ D, FRAICHARD T, et al. Avoiding cars and pedestrians using velocity obstacles and motion prediction[C]// Proceedings of the 2004 IEEE Intelligent Vehicle Symposium. Piscataway: IEEE, 2004: 375-379. | 
| 2 | HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286. 10.1103/physreve.51.4282 | 
| 3 | KELLER C G, GAVRILA D M. Will the pedestrian cross? a study on pedestrian path prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 494-506. 10.1109/tits.2013.2280766 | 
| 4 | KOOIJ J F P, SCHNEIDER N, FLOHR F, et al. Context-based pedestrian path prediction[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8694. Cham: Springer, 2014: 618-633. | 
| 5 | ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:961-971. 10.1109/cvpr.2016.110 | 
| 6 | GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:2255-2264. 10.1109/cvpr.2018.00240 | 
| 7 | MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:14412-14420. 10.1109/cvpr42600.2020.01443 | 
| 8 | SHI L S, WANG L, LONG C J, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8990-9009. 10.1109/cvpr46437.2021.00888 | 
| 9 | LI D, HU J, WANG C H, et al. Involution: inverting the inherence of convolution for visual recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12316-12325. 10.1109/cvpr46437.2021.01214 | 
| 10 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19) [2021-12-22].. | 
| 11 | SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1349-1358. 10.1109/cvpr.2019.00144 | 
| 12 | LIANG J W, JIANG L, NIEBLES J C, et al. Peeking into the future: predicting future person activities and locations in videos[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:5718-5727. 10.1109/cvprw.2019.00358 | 
| 13 | KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al. Social-BiGAT: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing System. [2021-12-17].. | 
| 14 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-12-23].. | 
| 15 | SUN J H, JIANG Q H, LU C W. Recursive social behavior graph for trajectory prediction[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 657-666. 10.1109/cvpr42600.2020.00074 | 
| 16 | YU C J, MA X, REN J W, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12357. Cham: Springer, 2020: 507-523. | 
| 17 | 王天保,刘昱,郭继昌,等. 图卷积神经网络行人轨迹预测算法[J]. 哈尔滨工业大学学报, 2021, 53(2):53-60. 10.11918/202006051 | 
| WANG T B, LIU Y, GUO J C, et al. Pedestrian trajectory prediction algorithm based on graph convolutional network[J]. Journal of Harbin Institute of Technology, 2021, 53(2):53-60. 10.11918/202006051 | |
| 18 | 张志远,刁英华. 结合社会特征和注意力的行人轨迹预测模型[J]. 西安电子科技大学学报, 2020, 47(1):10-17, 79. 10.19665/j.issn1001-2400.2020.01.002 | 
| ZHANG Z Y, DIAO Y H. Pedestrian trajectory prediction model with social features and attention[J]. Journal of Xidian University, 2020, 47(1):10-17, 79. 10.19665/j.issn1001-2400.2020.01.002 | |
| 19 | 毛琳,巩欣飞,杨大伟,等. 空时社交关系池化行人轨迹预测模型[J]. 计算机辅助设计与图形学学报, 2020, 32(12):1918-1925. 10.3724/sp.j.1089.2020.18236 | 
| MAO L, GONG X F, YANG D W, et al. Space-time social relationship pooling pedestrian trajectory prediction model[J]. Journal of Computer-Aided Design and Graphics, 2020, 32(12):1918-1925. 10.3724/sp.j.1089.2020.18236 | |
| 20 | 李琳辉,周彬,连静,等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6):175-183. 10.11959/j.issn.1000-436x.2020100 | 
| LI L H, ZHOU B, LIAN J, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on Communication, 2020, 41(6):175-183. 10.11959/j.issn.1000-436x.2020100 | |
| 21 | 程媛,迟荣华,黄少滨,等. 基于非参数密度估计的不确定轨迹预测方法[J]. 自动化学报, 2019, 45(4):787-798. 10.16383/j.aas.2018.c170419 | 
| CHENG Y, CHI R H, HUANG S B, et al. Uncertain trajectory prediction method using non-parametric density estimation[J]. Acta Automatica Sinica, 2019, 45(4):787-798. 10.16383/j.aas.2018.c170419 | |
| 22 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-12-22].. 10.48550/arXiv.1609.02907 | 
| 23 | YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:7444-7452. 10.1609/aaai.v32i1.12328 | 
| 24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018:3-19. | 
| 25 | PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: modeling social behavior for multi-target tracking[C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 261-268. 10.1109/iccv.2009.5459260 | 
| 26 | LERNER A, CHRYSANTHOU Y, LISCHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655-664. 10.1111/j.1467-8659.2007.01089.x | 
| 27 | RAKSINCHAROENSAK P, HASEGAWA T, NAGAI M. Motion planning and control of autonomous driving intelligence system based on risk potential optimization framework[J]. International Journal of Automotive Engineering, 2016, 7(AVEC14):53-60. 10.20485/jsaeijae.7.avec14_53 | 
| 28 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034. 10.1109/iccv.2015.123 | 
| 29 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-12-22].. | 
| 30 | ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12077-12086. 10.1109/cvpr.2019.01236 | 
| [1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. | 
| [3] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. | 
| [4] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. | 
| [5] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [6] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [7] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. | 
| [8] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. | 
| [9] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. | 
| [10] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. | 
| [11] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. | 
| [12] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. | 
| [13] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. | 
| [14] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. | 
| [15] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||