1 |
FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations [J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181.
|
2 |
SALVUCCI D D, GRAY R. A two-point visual control model of steering [J]. Perception, 2004, 33(10): 1233-1248.
|
3 |
URMSON C, ANHALT J, BAGNELL D, et al. Autonomous driving in urban environments: boss and the urban challenge [J]. Journal of Field Robotics, 2008, 25(8): 425-466.
|
4 |
LEONARD J, HOW J, TELLER S, et al. A perception-driven autonomous urban vehicle [J]. Journal of Field Robotics, 2008, 25(10): 727-774.
|
5 |
XU X, ZUO L, LI X, et al. A reinforcement learning approach to autonomous decision making of intelligent vehicles on highways [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(10): 3884-3897.
|
6 |
MIRCHEVSKA B, PEK C, WERLING M, et al. High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning [C]// Proceedings of the 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 2156-2162.
|
7 |
ZHANG S, PENG H, NAGESHRAO S, et al. Discretionary lane change decision making using reinforcement learning with model-based exploration [C]// Proceedings of the 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2019: 844-850.
|
8 |
AN H, JUNG J I. Decision-making system for lane change using deep reinforcement learning in connected and automated driving[J]. Electronics, 2019, 8(5): No.543.
|
9 |
王雪松,王荣荣,程玉虎.安全强化学习综述[J].自动化学报, 2023, 49(9): 1813-1835.
|
|
WANG X S, WANG R R, CHENG Y H. Safe reinforcement learning: a survey [J]. Acta Automatica Sinica, 2023, 49(9): 1813-1835.
|
10 |
代珊珊,刘全.基于动作约束深度强化学习的安全自动驾驶方法[J].计算机科学,2021,48(9): 235-243.
|
|
DAI S S, LIU Q. Action constrained deep reinforcement learning based safe automatic driving method [J]. Computer Science, 2021, 48(9): 235-243.
|
11 |
GARCÍA J, FERNÁNDEZ F. A comprehensive survey on safe reinforcement learning [J]. Journal of Machine Learning Research, 2015, 16: 1437-1480.
|
12 |
YU M, YANG Z, KOLAR M, et al. Convergent policy optimization for safe reinforcement learning [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 3127-3139.
|
13 |
GEIBEL P, WYSOTZKI F. Risk-sensitive reinforcement learning applied to control under constraints [J]. Journal of Artificial Intelligence Research, 2005, 24: 81-108.
|
14 |
MO S, PEI X, WU C. Safe reinforcement learning for autonomous vehicle using Monte Carlo tree search [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6766-6773.
|
15 |
BAHERI A, NAGESHRAO S, TSENG H E, et al. Deep reinforcement learning with enhanced safety for autonomous highway driving [C]// Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1550-1555.
|
16 |
LI G, YANG Y, LI S, et al. Decision making of autonomous vehicles in lane change scenarios: deep reinforcement learning approaches with risk awareness [J]. Transportation Research Part C: Emerging Technologies, 2022, 134: No.103452.
|
17 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533.
|
18 |
VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning [C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2094-2100.
|
19 |
WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1995-2003.
|
20 |
DUAN J, LI S E, GUAN Y, et al. Hierarchical reinforcement learning for self-driving decision-making without reliance on labelled driving data [J]. IET Intelligent Transport Systems, 2020, 14(5): 297-305.
|
21 |
HUANG Y, DU J, YANG Z, et al. A survey on trajectory-prediction methods for autonomous driving [J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674.
|
22 |
JOSEPH J, DOSHI-VELEZ F, HUANG A S, et al. A Bayesian nonparametric approach to modeling motion patterns [J]. Autonomous Robots, 2011, 31(4): 383-400.
|
23 |
BRÄNNSTRÖM M, COELINGH E, SJÖBERG J. Model-based threat assessment for avoiding arbitrary vehicle collisions [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 658-669.
|
24 |
KRASOWSKI H, WANG X, ALTHOFF M. Safe reinforcement learning for autonomous lane changing using set-based prediction[C]// Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2020: 1-7.
|
25 |
SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay [EB/OL]. (2016-02-25) [2023-04-04]. .
|