[1] LARGE F, VASQUEZ D, FRAICHARD T, et al. Avoiding cars and pedestrians using velocity obstacles and motion prediction[EB/OL].[2018-07-01]. https://www.researchgate.net/publication/29642615_Avoiding_Cars_and_Pedestrians_using_V-Obstacles_and_Motion_Prediction. [2] THOMPSON S, HORIUCHI T, KAGAMI S. A probabilistic model of human motion and navigation intent for mobile robot path planning[C]//Proceedings of the 20094th International Conference on Autonomous Robots and Agents. Piscataway, NJ:IEEE, 2009:663-668. [3] BENNEWITZ M. Learning motion patterns of people for compliant robot motion[J]. The International Journal of Robotics Research, 2005, 24(1):31-48. [4] HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E:Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics, 1995, 51(5):4282-4286. [5] TRAUTMAN P, KRAUSE A. Unfreezing the robot:navigation in dense, interacting crowds[C]//Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2010:797-803. [6] MORRIS B T, TRIVEDI M M. Trajectory learning for activity understanding:unsupervised, multilevel, and long-term adaptive approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2287-2301. [7] KITANI K M, ZIEBART B D, BAGNELL J A, et al. Activity forecasting[C]//Proceedings of the 2012 European Conference on Computer Vision, LNCS 7575. Berlin:Springer, 2012:201-214. [8] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM:human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:961-971. [9] VEMULA A, MUELLING K, OH J. Social attention:modeling attention in human crowds[EB/OL].[2018-03-25]. https://arxiv.org/pdf/1710.04689.pdf. [10] GUPTA A, JOHNSON J, LI F-F, et al. Social GAN:socially acceptable trajectories with generative adversarial networks[EB/OL].[2018-05-04]. https://arxiv.org/abs/1803.10892.pdf. [11] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014, 2:2204-2212. [12] CHEN H, SUN M, TU C, et al. Neural sentiment classification with user and product attention[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas:[s. n.], 2016:1650-1659. [13] 卢玲,杨武,王远伦,等.结合注意力机制的长文本分类方法[J].计算机应用,2018,38(5):1272-1277.(LU L, YANG W, WANG Y L, et al. Long text classification combined with attention mechanism[J]. Journal of Computer Applications, 2018, 38(5):1272-1277.) [14] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3:2672-2680. [15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[M]//GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin:Springer, 2012:37-45. [16] XU K, BA J, KIROS R, et al. Show, attend and tell:Neural image caption generation with visual attention[EB/OL].[2018-07-01]. https://arxiv.org/pdf/1502.03044v2.pdf. [17] FAN H, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:2463-2471. [18] PELLEGRINI S, ESS A, van GOOL L. Improving data association by joint modeling of pedestrian trajectories and groupings[C]//Proceedings of the 2010 European Conference on Computer Vision, LNCS 6311. Berlin:Springer, 2010:452-465. [19] LERNER A, CHRYSANTHOU Y, LISCHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3):655-664. [20] LEE N, CHOI W, VERNAZA P, et al. DESIRE:Distant future prediction in dynamic scenes with interacting Agents[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:2165-2174. |