Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 15-23.DOI: 10.11772/j.issn.1001-9081.2023121847
• Artificial intelligence • Previous Articles Next Articles
Wenbo ZHAO1,2, Zitong MA1,2, Zhe YANG1,2()
Received:
2024-01-04
Revised:
2024-03-12
Accepted:
2024-03-15
Online:
2024-03-28
Published:
2025-01-10
Contact:
Zhe YANG
About author:
ZHAO Wenbo, born in 1998, M. S. candidate. His research interests include graph machine learning, recommender systems.Supported by:
通讯作者:
杨哲
作者简介:
赵文博(1998—),男,安徽淮北人,硕士研究生,CCF会员,主要研究方向:图机器学习、推荐系统;基金资助:
CLC Number:
Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution[J]. Journal of Computer Applications, 2025, 45(1): 15-23.
赵文博, 马紫彤, 杨哲. 基于有向超图自适应卷积的链接预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 15-23.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121847
符号 | 含义 |
---|---|
顶点及有向超边的特征向量 | |
有向超图尾部、头部关联矩阵 | |
有向超图顶点特征矩阵 | |
有向超图超边特征矩阵 | |
顶点的度矩阵 | |
有向超边的度矩阵 | |
自适应因子对角矩阵 | |
顶点嵌入向量、顶点嵌入矩阵 | |
图邻接矩阵 | |
有向超图、顶点集、超边集 | |
自适应因子 | |
矩阵维度 | |
预测分数、模型损失 | |
零矩阵、单位矩阵 | |
顶点嵌入初始化操作 | |
有向超图自适应卷积运算 | |
激活函数 |
Tab. 1 Main symbols and their meanings
符号 | 含义 |
---|---|
顶点及有向超边的特征向量 | |
有向超图尾部、头部关联矩阵 | |
有向超图顶点特征矩阵 | |
有向超图超边特征矩阵 | |
顶点的度矩阵 | |
有向超边的度矩阵 | |
自适应因子对角矩阵 | |
顶点嵌入向量、顶点嵌入矩阵 | |
图邻接矩阵 | |
有向超图、顶点集、超边集 | |
自适应因子 | |
矩阵维度 | |
预测分数、模型损失 | |
零矩阵、单位矩阵 | |
顶点嵌入初始化操作 | |
有向超图自适应卷积运算 | |
激活函数 |
数据集 | 顶点数 | 边数 | 数据类型 |
---|---|---|---|
Amazon | 13 752 | 287 209 | 交易关系 |
Citeseer* | 3 312 | 1 079 | 引用关系 |
Cora* | 2 708 | 1 579 | 引用关系 |
DBLP | 43 413 | 22 535 | 共同作者 |
Survey | 2 539 | 12 969 | 社交网络 |
Tab. 2 Statistical information of datasets
数据集 | 顶点数 | 边数 | 数据类型 |
---|---|---|---|
Amazon | 13 752 | 287 209 | 交易关系 |
Citeseer* | 3 312 | 1 079 | 引用关系 |
Cora* | 2 708 | 1 579 | 引用关系 |
DBLP | 43 413 | 22 535 | 共同作者 |
Survey | 2 539 | 12 969 | 社交网络 |
模型 | Citeseer | Cora | ||
---|---|---|---|---|
AUC | AP | AUC | AP | |
MLP | 75.14 | 76.51 | 79.71 | 78.28 |
GCN | 88.29 | 89.31 | 91.97 | 90.24 |
GraphSAGE | 87.17 | 88.87 | 93.14 | 92.98 |
GAT | 82.42 | 84.43 | 91.36 | 91.21 |
DiGCN | 93.06 | 93.92 | 93.28 | 93.21 |
DiGAE | 90.79 | 89.88 | 93.68 | 93.27 |
HGNN | 92.83 | 92.51 | 82.93 | 82.33 |
HNHN | 88.35 | 89.55 | 92.24 | 92.35 |
HGNN+ | 93.09 | 93.47 | 93.65 | 93.15 |
DHNN | ||||
DHAC | 95.39 | 95.34 | 93.94 | 93.75 |
Tab. 3 Experimental results of link prediction based on explicit vertex features
模型 | Citeseer | Cora | ||
---|---|---|---|---|
AUC | AP | AUC | AP | |
MLP | 75.14 | 76.51 | 79.71 | 78.28 |
GCN | 88.29 | 89.31 | 91.97 | 90.24 |
GraphSAGE | 87.17 | 88.87 | 93.14 | 92.98 |
GAT | 82.42 | 84.43 | 91.36 | 91.21 |
DiGCN | 93.06 | 93.92 | 93.28 | 93.21 |
DiGAE | 90.79 | 89.88 | 93.68 | 93.27 |
HGNN | 92.83 | 92.51 | 82.93 | 82.33 |
HNHN | 88.35 | 89.55 | 92.24 | 92.35 |
HGNN+ | 93.09 | 93.47 | 93.65 | 93.15 |
DHNN | ||||
DHAC | 95.39 | 95.34 | 93.94 | 93.75 |
模型 | Amazon | Citeseer | Cora | DBLP | Survey | |||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | AP | AUC | AP | AUC | AP | AUC | AP | AUC | AP | |
MLP | 81.49 | 79.73 | 58.26 | 61.53 | 64.93 | 66.07 | 75.63 | 74.75 | 73.03 | 75.81 |
GCN | 90.35 | 89.52 | 67.91 | 70.33 | 74.59 | 76.32 | 89.30 | 87.76 | 86.16 | 87.21 |
GraphSAGE | 93.16 | 93.29 | 75.71 | 76.61 | 85.74 | 83.95 | 91.29 | 89.10 | 87.32 | 85.37 |
GAT | 91.15 | 90.45 | 73.93 | 77.59 | 82.62 | 84.65 | 95.79 | |||
DiGCN | 92.17 | 77.11 | 80.27 | 87.61 | 87.54 | 86.93 | 84.05 | 90.24 | 89.89 | |
DiGAE | 91.82 | 84.94 | 72.57 | 75.12 | 82.64 | 83.31 | 88.97 | 87.02 | 86.16 | 84.02 |
HGNN | 92.38 | 91.43 | 77.49 | 79.16 | 87.33 | 86.29 | 88.61 | 86.96 | 84.62 | 87.61 |
HNHN | 93.19 | 77.80 | 78.51 | 85.81 | 84.71 | 71.74 | 71.13 | 80.51 | 87.52 | |
HGNN+ | 90.99 | 89.41 | 79.55 | 89.89 | 88.62 | 85.83 | 88.98 | |||
DHNN | 93.13 | 92.76 | 80.41 | 89.56 | 88.56 | 88.42 | 87.51 | 90.37 | 89.47 | |
DHAC | 95.82 | 95.19 | 81.69 | 83.35 | 91.43 | 91.54 | 95.34 | 93.46 | 93.81 |
Tab. 4 Experimental results of link prediction based on implicit vertex features
模型 | Amazon | Citeseer | Cora | DBLP | Survey | |||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | AP | AUC | AP | AUC | AP | AUC | AP | AUC | AP | |
MLP | 81.49 | 79.73 | 58.26 | 61.53 | 64.93 | 66.07 | 75.63 | 74.75 | 73.03 | 75.81 |
GCN | 90.35 | 89.52 | 67.91 | 70.33 | 74.59 | 76.32 | 89.30 | 87.76 | 86.16 | 87.21 |
GraphSAGE | 93.16 | 93.29 | 75.71 | 76.61 | 85.74 | 83.95 | 91.29 | 89.10 | 87.32 | 85.37 |
GAT | 91.15 | 90.45 | 73.93 | 77.59 | 82.62 | 84.65 | 95.79 | |||
DiGCN | 92.17 | 77.11 | 80.27 | 87.61 | 87.54 | 86.93 | 84.05 | 90.24 | 89.89 | |
DiGAE | 91.82 | 84.94 | 72.57 | 75.12 | 82.64 | 83.31 | 88.97 | 87.02 | 86.16 | 84.02 |
HGNN | 92.38 | 91.43 | 77.49 | 79.16 | 87.33 | 86.29 | 88.61 | 86.96 | 84.62 | 87.61 |
HNHN | 93.19 | 77.80 | 78.51 | 85.81 | 84.71 | 71.74 | 71.13 | 80.51 | 87.52 | |
HGNN+ | 90.99 | 89.41 | 79.55 | 89.89 | 88.62 | 85.83 | 88.98 | |||
DHNN | 93.13 | 92.76 | 80.41 | 89.56 | 88.56 | 88.42 | 87.51 | 90.37 | 89.47 | |
DHAC | 95.82 | 95.19 | 81.69 | 83.35 | 91.43 | 91.54 | 95.34 | 93.46 | 93.81 |
嵌入维度 | Citeseer | Cora | ||
---|---|---|---|---|
AUC/% | AP/% | AUC/% | AP/% | |
4 | 76.91 | 77.97 | 87.45 | 86.97 |
8 | 78.52 | 80.61 | 90.24 | 89.10 |
16 | 80.26 | 81.81 | 91.18 | 90.54 |
32 | 81.48 | 82.79 | 91.36 | 91.12 |
64 | 81.69 | 83.35 | 91.43 | 91.54 |
128 | 81.83 | 83.51 | 90.93 | 92.33 |
256 | 81.35 | 83.55 | 91.24 | 91.35 |
Tab. 5 Embedding dimension experimental results
嵌入维度 | Citeseer | Cora | ||
---|---|---|---|---|
AUC/% | AP/% | AUC/% | AP/% | |
4 | 76.91 | 77.97 | 87.45 | 86.97 |
8 | 78.52 | 80.61 | 90.24 | 89.10 |
16 | 80.26 | 81.81 | 91.18 | 90.54 |
32 | 81.48 | 82.79 | 91.36 | 91.12 |
64 | 81.69 | 83.35 | 91.43 | 91.54 |
128 | 81.83 | 83.51 | 90.93 | 92.33 |
256 | 81.35 | 83.55 | 91.24 | 91.35 |
1 | LIBEN-NOWELL D, KLEINBERG J. The link prediction problem for social networks [C]// Proceedings of the 12th International Conference on Information and Knowledge Management. New York: ACM, 2003: 556-559. |
2 | ZHANG M, CHEN Y. Link prediction based on graph neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 5171-5181. |
3 | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
4 | MICHELI A. Neural network for graphs: a contextual constructive approach [J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511. |
5 | NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016: 2014-2023. |
6 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [EB/OL]. [2023-07-14]. . |
7 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. |
8 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2023-07-02]. . |
9 | BRETTO A. Hypergraph theory: an introduction, MATHENGIN [M]. Cham: Springer, 2013. |
10 | ZHOU D, HUANG J, SCHÖLKOPF B. Learning with hypergraphs: clustering, classification, and embedding [C]// Proceedings of the 19th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 1601-1608. |
11 | FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565. |
12 | GAO Y, FENG Y, JI S, et al. HGNN+: general hypergraph neural networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3181-3199. |
13 | OU M, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. |
14 | ZHOU D, HUANG J, SCHÖLKOPF B. Learning from labeled and unlabeled data on a directed graph [C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005: 1036-1043. |
15 | TONG Z, LIANG Y, SUN C, et al. Digraph inception convolutional networks [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 17907-17918. |
16 | KOLLIAS G, KALANTZIS V, IDÉ T, et al. Directed graph auto-encoders [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 7211-7219. |
17 | MA Y, HAO J, YANG Y, et al. Spectral-based graph convolutional network for directed graphs [EB/OL]. [2023-04-21]. . |
18 | KAMPFFMEYER M, CHEN Y, LIANG X, et al. Rethinking knowledge graph propagation for zero-shot learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11479-11488. |
19 | GALLO G, LONGO G, PALLOTTINO S, et al. Directed hypergraphs and applications [J]. Discrete Applied Mathematics, 1993, 42(2/3): 177-201. |
20 | XIAO G, LIAO J, TAN Z, et al. A two-stage framework for directed hypergraph link prediction [J]. Mathematics, 2022, 10(14): No.2372. |
21 | XIAO G, LIAO J, TAN Z, et al. Hyperbolic directed hypergraph-based reasoning for multi-hop KBQA [J]. Mathematics, 2022, 10(20): No.3905. |
22 | TRAN L H, TRAN L H. Directed hypergraph neural network [EB/OL]. [2023-09-15]. . |
23 | HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory [J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. |
24 | HAMILTON W, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. |
25 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-01-11]. . |
26 | MORRIS C, RITZERT M, FEY M, et al. Weisfeiler and Leman go neural: higher-order graph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 4602-4609. |
27 | HUANG J, YANG J. UniGNN: a unified framework for graph and hypergraph neural networks [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2563-2569. |
28 | 徐良奎,杨哲,吴国荣,等.多通道Laplacian矩阵融合的超图直推学习模型[J].小型微型计算机系统, 2023, 44(11): 2566-2575. |
XU L K, YANG Z, WU G R, et al. Hypergraph transduction learning model based on multi-channel Laplacian matrix fusion [J]. Journal of Chinese Computer Systems, 2023, 44(11): 2566-2575. | |
29 | DONG Y, SAWIN W, BENGIO Y. HNHN: hypergraph networks with hyperedge neurons [EB/OL]. [2023-08-25]. . |
30 | BAI S, ZHANG F, TORR P H S. Hypergraph convolution and hypergraph attention [J]. Pattern Recognition, 2021, 110: No.107637. |
31 | ZHANG X, HE Y, BRUGNONE N, et al. MagNet: a neural network for directed graphs [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 27003-27015. |
32 | AUSIELLO G, LAURA L. Directed hypergraphs: introduction and fundamental algorithms — a survey [J]. Theoretical Computer Science, 2017, 658(Pt B): 293-306. |
33 | HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034. |
34 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323. |
35 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
36 | SHCHUR O, MUMME M, BOJCHEVSKI A, et al. Pitfalls of graph neural network evaluation [EB/OL]. [2022-11-21]. . |
37 | ROSSI R A, AHMED N K. The network data repository with interactive graph analytics and visualization [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 4292-4293. |
38 | SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data [J]. AI Magazine, 2008, 29(3): 93-106. |
39 | TANG J, ZHANG J, YAO L, et al. ArnetMiner: extraction and mining of academic social networks [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 990-998. |
40 | MOODY J. Peer influence groups: identifying dense clusters in large networks [J]. Social Networks, 2001, 23(4): 261-283. |
41 | LOBO J M, JIMÉNEZ-VALVERDE A, REAL R. AUC: a misleading measure of the performance of predictive distribution models [J]. Global Ecology and Biogeography, 2008, 17(2): 145-151. |
42 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
43 | KINGMA D P, BA J L. Adam: a method for stochastic optimization. [EB/OL]. [2021-03-11]. . |
[1] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[5] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[6] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[7] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[8] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[9] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[10] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[11] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
[12] | Yirui HUANG, Junwei LUO, Jingqiang CHEN. Multi-modal dialog reply retrieval based on contrast learning and GIF tag [J]. Journal of Computer Applications, 2024, 44(1): 32-38. |
[13] | Wei TONG, Liyang HE, Rui LI, Wei HUANG, Zhenya HUANG, Qi LIU. Efficient similar exercise retrieval model based on unsupervised semantic hashing [J]. Journal of Computer Applications, 2024, 44(1): 206-216. |
[14] | Chunlei WANG, Xiao WANG, Kai LIU. Multimodal knowledge graph representation learning: a review [J]. Journal of Computer Applications, 2024, 44(1): 1-15. |
[15] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||