Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 633-639.DOI: 10.11772/j.issn.1001-9081.2024020252
• Multimedia computing and computer simulation • Previous Articles
Zhongwei ZHANG1, Jun WANG1, Shudong LIU1(), Zhiheng WANG2
Received:
2024-03-11
Revised:
2024-04-23
Accepted:
2024-04-25
Online:
2024-06-04
Published:
2025-02-10
Contact:
Shudong LIU
About author:
ZHANG Zhongwei, born in 1986, Ph. D., lecturer. Her research interests include deep learning, image processing, pattern recognition.Supported by:
通讯作者:
刘树东
作者简介:
张众维(1986—),女,黑龙江齐齐哈尔人,讲师,博士,主要研究方向:深度学习、图像处理、模式识别基金资助:
CLC Number:
Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion[J]. Journal of Computer Applications, 2025, 45(2): 633-639.
张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020252
方法 | AP | mAP | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | ||
RoI Transformer | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56 |
SCRDet | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61 | |
R3Det | 89.49 | 81.17 | 50.53 | 66.10 | 70.92 | 78.66 | 78.21 | 90.81 | 85.26 | 84.23 | 61.81 | 63.77 | 68.16 | 69.83 | 67.17 | 73.74 |
文献[ | 89.26 | 82.26 | 51.33 | 68.49 | 78.88 | 74.14 | 85.59 | 84.94 | 85.73 | 60.78 | 64.76 | 65.72 | 71.32 | 59.08 | 74.21 | |
FEADet | 88.60 | 78.80 | 50.11 | 72.85 | 80.54 | 80.67 | 87.40 | 90.80 | 84.73 | 83.90 | 65.11 | 62.79 | 66.55 | 69.86 | 52.84 | 74.37 |
ReDet | 88.79 | 82.64 | 53.97 | 78.13 | 84.06 | 88.04 | 90.89 | 85.75 | 61.76 | 60.39 | 68.07 | 63.59 | 76.25 | |||
O-RP | 89.53 | 84.07 | 59.86 | 71.76 | 79.95 | 80.03 | 87.33 | 90.84 | 87.54 | 85.23 | 59.15 | 66.37 | 75.23 | 73.75 | 57.23 | 76.52 |
PSC | 86.37 | 51.76 | 63.42 | 81.21 | 84.63 | 90.80 | 85.39 | 87.63 | 61.00 | 66.41 | 75.01 | |||||
EW-YOLO | 88.62 | 64.01 | 88.34 | 90.80 | 86.22 | 60.71 | 76.14 | 82.69 | 65.82 | 77.47 |
Tab. 1 Performance comparison of proposed method and state-of-the-art methods on DOTA dataset
方法 | AP | mAP | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | ||
RoI Transformer | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56 |
SCRDet | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61 | |
R3Det | 89.49 | 81.17 | 50.53 | 66.10 | 70.92 | 78.66 | 78.21 | 90.81 | 85.26 | 84.23 | 61.81 | 63.77 | 68.16 | 69.83 | 67.17 | 73.74 |
文献[ | 89.26 | 82.26 | 51.33 | 68.49 | 78.88 | 74.14 | 85.59 | 84.94 | 85.73 | 60.78 | 64.76 | 65.72 | 71.32 | 59.08 | 74.21 | |
FEADet | 88.60 | 78.80 | 50.11 | 72.85 | 80.54 | 80.67 | 87.40 | 90.80 | 84.73 | 83.90 | 65.11 | 62.79 | 66.55 | 69.86 | 52.84 | 74.37 |
ReDet | 88.79 | 82.64 | 53.97 | 78.13 | 84.06 | 88.04 | 90.89 | 85.75 | 61.76 | 60.39 | 68.07 | 63.59 | 76.25 | |||
O-RP | 89.53 | 84.07 | 59.86 | 71.76 | 79.95 | 80.03 | 87.33 | 90.84 | 87.54 | 85.23 | 59.15 | 66.37 | 75.23 | 73.75 | 57.23 | 76.52 |
PSC | 86.37 | 51.76 | 63.42 | 81.21 | 84.63 | 90.80 | 85.39 | 87.63 | 61.00 | 66.41 | 75.01 | |||||
EW-YOLO | 88.62 | 64.01 | 88.34 | 90.80 | 86.22 | 60.71 | 76.14 | 82.69 | 65.82 | 77.47 |
方法 | mAP | 方法 | mAP |
---|---|---|---|
SBD | 93.70 | ReDet | |
R3Det | 96.01 | 本文方法 | 97.75 |
O-RP | 97.26 |
Tab. 2 Performance comparison of proposed method and state-of-the-art methods on HRSC dataset
方法 | mAP | 方法 | mAP |
---|---|---|---|
SBD | 93.70 | ReDet | |
R3Det | 96.01 | 本文方法 | 97.75 |
O-RP | 97.26 |
方法 | mAP | 方法 | mAP |
---|---|---|---|
RoI Transformer | 88.95 | R3Det | 96.17 |
O-RP | 90.11 | 本文方法 | 98.10 |
RetinaNet-H | 95.47 |
Tab. 3 Performance comparison of proposed method and state-of-the-art methods on UCAS-AOD dataset
方法 | mAP | 方法 | mAP |
---|---|---|---|
RoI Transformer | 88.95 | R3Det | 96.17 |
O-RP | 90.11 | 本文方法 | 98.10 |
RetinaNet-H | 95.47 |
方法 | mAP@0.5/% | Params/106 | GFLOPs |
---|---|---|---|
YOLOv5-S | 75.9 | 7.5 | 17.6 |
YOLOX-S | 69.9 | 9.0 | 26.8 |
YOLOv7-tiny | 74.6 | 6.2 | 13.8 |
YOLOv8-S | 69.8 | 11.2 | 28.6 |
EW-YOLO | 77.5 | 7.7 | 16.3 |
Tab. 4 Performance comparison of the proposed method and EW-YOLO and a variety of YOLO methods on DOTA dataset
方法 | mAP@0.5/% | Params/106 | GFLOPs |
---|---|---|---|
YOLOv5-S | 75.9 | 7.5 | 17.6 |
YOLOX-S | 69.9 | 9.0 | 26.8 |
YOLOv7-tiny | 74.6 | 6.2 | 13.8 |
YOLOv8-S | 69.8 | 11.2 | 28.6 |
EW-YOLO | 77.5 | 7.7 | 16.3 |
方法 | WHead | EFPN | mAP/% |
---|---|---|---|
baseline | 75.92 | ||
baseline+WHead | √ | 76.34 | |
baseline+EFPN | √ | 77.02 | |
baseline+WHead+EFPN | √ | √ | 77.47 |
Tab. 5 Results of ablation experiments on DOTA dataset
方法 | WHead | EFPN | mAP/% |
---|---|---|---|
baseline | 75.92 | ||
baseline+WHead | √ | 76.34 | |
baseline+EFPN | √ | 77.02 | |
baseline+WHead+EFPN | √ | √ | 77.47 |
方法 | WHead | EFPN | mAP/% |
---|---|---|---|
baseline | 95.08 | ||
baseline+WHead | √ | 96.41 | |
baseline+EFPN | √ | 96.65 | |
baseline+WHead+EFPN | √ | √ | 97.75 |
Tab. 6 Results of ablation experiments on HRSC dataset
方法 | WHead | EFPN | mAP/% |
---|---|---|---|
baseline | 95.08 | ||
baseline+WHead | √ | 96.41 | |
baseline+EFPN | √ | 96.65 | |
baseline+WHead+EFPN | √ | √ | 97.75 |
1 | 廖育荣,王海宁,林存宝,等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5):190-203. |
LIAO Y R, WANG H N, LIN C B, et al. Research progress of deep learning-based object detection of optical remote sensing image[J]. Journal on Communications, 2022, 43(5):190-203. | |
2 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. |
3 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
4 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. |
5 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-03-01].. |
6 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
7 | Ultralytics. YOLOv5[EB/OL]. [2024-03-01].. |
8 | DING J, XUE N, LONG Y, et al. Learning RoI Transformer for oriented object detection in aerial images[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2844-2853. |
9 | YANG X, YANG J, YAN J, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8231-8240. |
10 | YANG X, YAN J, FENG Z, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021:3163-3171. |
11 | HAN J, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2785-2794. |
12 | LI W, CHEN Y, HU K, et al. Oriented RepPoints for aerial object detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1819-1828. |
13 | YU Y, DA F. Phase-shifting coder: predicting accurate orientation in oriented object detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13354-13363. |
14 | 汪西莉,梁正印,刘涛. 基于特征注意力金字塔的遥感图像目标检测方法[J]. 遥感学报, 2023, 27(2):492-501. |
WANG X L, LIANG Z Y, LIU T. Feature attention pyramid-based remote sensing image object detection method[J]. National Remote Sensing Bulletin, 2023, 27(2):492-501. | |
15 | 邵延华,张铎,楚红雨,等. 基于深度学习的YOLO目标检测综述[J].电子与信息学报, 2022, 44(10):3697-3708. |
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2022, 44(10):3697-3708. | |
16 | XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design[EB/OL]. [2024-03-01].. |
17 | SOLOVYEV R, WANG W, GABRUSEVA T. Weighted boxes fusion: ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: No.104117. |
18 | YANG X, YAN J. On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130(5): 1340-1365. |
19 | LIU C, ZHANG S, HU M, et al. Object detection in remote sensing images based on adaptive multi-scale feature fusion method[J]. Remote Sensing, 2024, 16(5): No.907. |
20 | XIE X, YOU Z H, CHEN S B, et al. Feature enhancement and alignment for oriented object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 778-787. |
21 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
[1] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[2] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[3] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[4] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[5] | Shijia WEN, Shijun JING. Dynamic visual SLAM algorithm incorporating object detection and feature point association [J]. Journal of Computer Applications, 2025, 45(2): 610-615. |
[6] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. |
[7] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[8] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[9] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[10] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[11] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[12] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[13] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[14] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[15] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||