Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 453-466.DOI: 10.11772/j.issn.1001-9081.2024020229
• Cyber security • Previous Articles Next Articles
Miaolei DENG1,2, Yupei KAN1,2(), Chuanchuan SUN1,2, Haihang XU1,2, Shaojun FAN1,2, Xin ZHOU1,2
Received:
2024-03-06
Revised:
2024-05-15
Accepted:
2024-05-20
Online:
2024-07-19
Published:
2025-02-10
Contact:
Yupei KAN
About author:
DENG Miaolei, born in 1977, Ph. D., professor. His research interests include information security, internet of things.Supported by:
邓淼磊1,2, 阚雨培1,2(), 孙川川1,2, 徐海航1,2, 樊少珺1,2, 周鑫1,2
通讯作者:
阚雨培
作者简介:
邓淼磊(1977—),男,河南南阳人,教授,博士,CCF杰出会员,主要研究方向:信息安全、物联网基金资助:
CLC Number:
Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning[J]. Journal of Computer Applications, 2025, 45(2): 453-466.
邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫. 基于深度学习的网络入侵检测系统综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 453-466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020229
类型 | 数据来源 | 部署方式 | 检测效率 | 适用性 | 局限性 |
---|---|---|---|---|---|
HIDS | 操作系统或 应用程序的日志 | 每台主机;依赖于操作系统; 难以部署 | 低,必须处理大量日志 | 适用于监测 主机本地活动 | 无法分析网络行为 |
NIDS | 网络流量 | 关键网络点;易于部署 | 高,可实时检测攻击 | 适用于监测 网络流量和通信 | 仅监控通过 特定网段的流量 |
Tab. 1 Differences between HIDS and NIDS
类型 | 数据来源 | 部署方式 | 检测效率 | 适用性 | 局限性 |
---|---|---|---|---|---|
HIDS | 操作系统或 应用程序的日志 | 每台主机;依赖于操作系统; 难以部署 | 低,必须处理大量日志 | 适用于监测 主机本地活动 | 无法分析网络行为 |
NIDS | 网络流量 | 关键网络点;易于部署 | 高,可实时检测攻击 | 适用于监测 网络流量和通信 | 仅监控通过 特定网段的流量 |
类型 | 检测性能 | 检测效率 | 数据要求 | 可解释性 | 未知攻击 |
---|---|---|---|---|---|
MIDS | 误报率低;漏报率高 | 高;随着特征 数据库规模的扩大而降低 | 几乎所有的检测都 依赖于已知的攻击数据 | 基于领域知识的设计,解释能力强 | 仅检测已知攻击 |
AIDS | 漏报率低;误报率高 | 取决于模型 复杂性 | 低,只有特征设计依赖于 攻击数据 | 仅输出检测结果, 解释能力弱 | 检测已知和未知攻击 |
Tab. 2 Differences between MIDS and AIDS
类型 | 检测性能 | 检测效率 | 数据要求 | 可解释性 | 未知攻击 |
---|---|---|---|---|---|
MIDS | 误报率低;漏报率高 | 高;随着特征 数据库规模的扩大而降低 | 几乎所有的检测都 依赖于已知的攻击数据 | 基于领域知识的设计,解释能力强 | 仅检测已知攻击 |
AIDS | 漏报率低;误报率高 | 取决于模型 复杂性 | 低,只有特征设计依赖于 攻击数据 | 仅输出检测结果, 解释能力弱 | 检测已知和未知攻击 |
模型 | 文献 | 方法 | 数据集 | 性能 |
---|---|---|---|---|
RNN | [ | XGBoost+RNN/LSTM/GRU | NSL-KDD,UNSW-NB15 | XGBoost LSTM在NSL-KDD数据集上的准确率88.13%; XGBoost RNN在UNSW-NB15数据集上的准确率87.07% |
[ | AE+LSTM | NSL-KDD | Acc:89% | |
[ | AE+GRU | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为89.54%和88.39% | |
AE | [ | SCAE+SVM | NSL-KDD | Acc:89.93%,Recall:89.93%,f-measure:96.94% |
[ | CVAE+CNN/GRU | CSE-CIC-IDS 2018[ | CSE-IC-IDS 2018数据集的准确率分别为98.58%和98.56% | |
[ | SAE/SSAE/DAE/ContAE/CAE | UNSW-NB15 | Acc: 87.16%,87.36%,86.05%,88.48%,86.66% | |
DBM | [ | DBM+Softmax | NSL-KDD | Acc:93.52% |
[ | RBM+SVM/DT/RF | NSL-KDD | Acc:83.05%,81.89%,79.87% | |
[ | RBM+3WD | NSL-KDD | Acc:96.1% | |
DBN | [ | DBN+SVM | CICIDS 2017 | Acc:97.74%,Recall:97.68%,f-measure:97.68% |
[ | DBN+LSTM | KDD99, CICIDS 2017 | 在KDD99和CICIDS 2017数据集上,准确率分别为94.80%和86.35% | |
CNN | [ | CNN+BiLSTM | NSL-KDD | Acc:99.31% |
[ | MECNN | AWID[ | 在AWID和CIC-IDS2017数据集上,准确率分别为99.96%和99.84% | |
[ | CANET | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为99.74%和89.39% | |
GAN | [ | GAN+CNN | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为93.2%和87% |
[ | B-GAN+LSTM | SWaT[ | Acc:90.97% | |
GNN | [ | E-GraphSAGE | BoT-IoT[ | 在BoT-IoT和TON-IoT数据集上,准确率分别为99.99%和97.87% |
[ | E-GraphSAGE M/E-ResGAT | TON-IOT | Acc:99.88%,99.88% | |
[ | Anomal-E | NF-UNSW-NB15-v2[ | Acc:98.18% |
Tab. 3 Performance comparison of multiple intrusion detection models
模型 | 文献 | 方法 | 数据集 | 性能 |
---|---|---|---|---|
RNN | [ | XGBoost+RNN/LSTM/GRU | NSL-KDD,UNSW-NB15 | XGBoost LSTM在NSL-KDD数据集上的准确率88.13%; XGBoost RNN在UNSW-NB15数据集上的准确率87.07% |
[ | AE+LSTM | NSL-KDD | Acc:89% | |
[ | AE+GRU | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为89.54%和88.39% | |
AE | [ | SCAE+SVM | NSL-KDD | Acc:89.93%,Recall:89.93%,f-measure:96.94% |
[ | CVAE+CNN/GRU | CSE-CIC-IDS 2018[ | CSE-IC-IDS 2018数据集的准确率分别为98.58%和98.56% | |
[ | SAE/SSAE/DAE/ContAE/CAE | UNSW-NB15 | Acc: 87.16%,87.36%,86.05%,88.48%,86.66% | |
DBM | [ | DBM+Softmax | NSL-KDD | Acc:93.52% |
[ | RBM+SVM/DT/RF | NSL-KDD | Acc:83.05%,81.89%,79.87% | |
[ | RBM+3WD | NSL-KDD | Acc:96.1% | |
DBN | [ | DBN+SVM | CICIDS 2017 | Acc:97.74%,Recall:97.68%,f-measure:97.68% |
[ | DBN+LSTM | KDD99, CICIDS 2017 | 在KDD99和CICIDS 2017数据集上,准确率分别为94.80%和86.35% | |
CNN | [ | CNN+BiLSTM | NSL-KDD | Acc:99.31% |
[ | MECNN | AWID[ | 在AWID和CIC-IDS2017数据集上,准确率分别为99.96%和99.84% | |
[ | CANET | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为99.74%和89.39% | |
GAN | [ | GAN+CNN | NSL-KDD,UNSW-NB15 | 在NSL-KDD和UNSW-NB15数据集上,准确率分别为93.2%和87% |
[ | B-GAN+LSTM | SWaT[ | Acc:90.97% | |
GNN | [ | E-GraphSAGE | BoT-IoT[ | 在BoT-IoT和TON-IoT数据集上,准确率分别为99.99%和97.87% |
[ | E-GraphSAGE M/E-ResGAT | TON-IOT | Acc:99.88%,99.88% | |
[ | Anomal-E | NF-UNSW-NB15-v2[ | Acc:98.18% |
模型 | 优点 | 功能 | 适用情况 |
---|---|---|---|
RNN | 捕捉网络流量中的时序特征 | 特征提取;分类 | 时序数据、网络流量等具有序列结构的数据 |
AE | 自动学习数据中的有用特征;无监督学习 | 特征提取;数据降维;去噪 | 数据集较大,特征维数较多 |
RBM | 实现数据降维,以及可以无监督学习 | 特征提取;数据降维;去噪 | |
DBN | 学习特征的深层次信息,具有较强的泛化能力。 | 特征提取;分类 | |
CNN | 更好地提取目标特征,提高入侵检测模型的计算效率 | 特征提取;分类 | 抓取网络流量的空间特征,作为高准确率的分类器 |
GAN | 并生成少数类数据,处理数据集不平衡 | 数据增强;对抗训练 | 数据集不平衡 |
GNN | 更好地捕获网络流量中的结构性行为,学习网络 节点中的复杂关系和特征,动态检测攻击 | 分类 | 涉及网络结构和节点关系的场景 |
Tab. 4 Comparison of different types of intrusion detection models
模型 | 优点 | 功能 | 适用情况 |
---|---|---|---|
RNN | 捕捉网络流量中的时序特征 | 特征提取;分类 | 时序数据、网络流量等具有序列结构的数据 |
AE | 自动学习数据中的有用特征;无监督学习 | 特征提取;数据降维;去噪 | 数据集较大,特征维数较多 |
RBM | 实现数据降维,以及可以无监督学习 | 特征提取;数据降维;去噪 | |
DBN | 学习特征的深层次信息,具有较强的泛化能力。 | 特征提取;分类 | |
CNN | 更好地提取目标特征,提高入侵检测模型的计算效率 | 特征提取;分类 | 抓取网络流量的空间特征,作为高准确率的分类器 |
GAN | 并生成少数类数据,处理数据集不平衡 | 数据增强;对抗训练 | 数据集不平衡 |
GNN | 更好地捕获网络流量中的结构性行为,学习网络 节点中的复杂关系和特征,动态检测攻击 | 分类 | 涉及网络结构和节点关系的场景 |
1 | LV Z, QIAO L, LI J, et al. Deep-learning-enabled security issues in the internet of things[J]. IEEE Internet of Things Journal, 2021, 8(12): 9531-9538. |
2 | BAJPAI P, SOOD A K, ENBODY R J. The art of mapping IoT devices in networks[J]. Network Security, 2018, 2018(4): 8-15. |
3 | P Anderson Company JAMES. Computer security threat monitoring and surveillance[R/OL]. [2023-12-10].. |
4 | FANG L, LI Y, LIU Z, et al. A practical model based on anomaly detection for protecting medical IoT control services against external attacks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4260-4269. |
5 | MICHIE D, SPIEGELHALTER D J, TAYLOR C C, et al. Machine learning, neural and statistical classification[M]. Upper Saddle River, NJ: Ellis Horwood, 1995. |
6 | AL-OMARI M, RAWASHDEH M, QUTAISHAT F, et al. An intelligent tree-based intrusion detection model for cyber security[J]. Journal of Network and Systems Management, 2021, 29: No.20. |
7 | ALAM S, SONBHADRA S K, AGARWAL S, et al. One-class support vector classifiers: a survey[J]. Knowledge-Based Systems, 2020, 196: No.105754. |
8 | 程超,武静凯,陈梅. 一种基于RBM-SVM算法的无线传感网络入侵检测算法[J]. 计算机应用与软件, 2022, 39(5): 325-329. |
CHENG C, WU J K, CHEN M. An intrusion detection algorithm for wireless sensor network based on RBM-SVM algorithm[J]. Computer Applications and Software, 2022, 39(5): 325-329. | |
9 | 张昊,张小雨,张振友,等. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
ZHANG H, ZHANG X Y, ZHANG Z Y, et al. Summary of intrusion detection models based on deep learning[J]. Computer Engineering and Applications, 2022, 58(6): 17-28. | |
10 | WANG N, CHEN Y, XIAO Y, et al. MANDA: on adversarial example detection for network intrusion detection system[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 1139-1153. |
11 | 刘拥民,杨钰津,罗皓懿,等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43(1): 160-168. |
LIU Y M, YANG Y J, LUO H Y, et al. Intrusion detection method for wireless sensor network based on bidirectional circulation generative adversarial network[J]. Journal of Computer Applications, 2023, 43(1): 160-168. | |
12 | MOHAMMADPOUR L, LING T C, LIEW C S, et al. A survey of CNN-based network intrusion detection[J]. Applied Sciences, 2022, 12(16): No.8162. |
13 | 白万荣,魏峰,郑广远,等. 基于TCN-BiLSTM的入侵检测算法研究[J]. 计算机科学, 2023, 50(11A): No.230300142. |
BAI W R, WEI F, ZHENG G Y, et al. Study on intrusion detection algorithm based on TCN-BiLSTM[J]. Computer Science, 2023, 50(11A): No.230300142. | |
14 | DENNING D E. An intrusion-detection model[J]. IEEE Transactions on Software Engineering, 1987, SE-13(2): 222-232. |
15 | LIN Y, ZHANG Y, OU Y J. The design and implementation of host-based intrusion detection system[C]// Proceedings of the 3rd International Symposium on Intelligent Information Technology and Security Informatics. Piscataway: IEEE, 2010: 595-598. |
16 | HAMED T, DARA R, KREMER S C. Network intrusion detection system based on recursive feature addition and bigram technique[J]. Computers and Security, 2018, 73: 137-155. |
17 | EDEH D I. Network intrusion detection system using deep learning technique[D/OL]. [2023-12-10].. |
18 | THAKKAR A, LOHIYA R. A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions[J]. Artificial Intelligence Review, 2022, 55(1): 453-563. |
19 | WU P. Deep learning for network intrusion detection: attack recognition with computational intelligence[D/OL]. [2023-12-10].. |
20 | VASILOMANOLAKIS E, KARUPPAYAH S, MÜHLHÄUSER M, et al. Taxonomy and survey of collaborative intrusion detection[J]. ACM Computing Surveys, 2015, 47(4): No.55. |
21 | TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]// Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway: IEEE, 2009: 1-6. |
22 | PROTIĆ DD. Review of KDD Cup’99, NSL-KDD and Kyoto 2006+ datasets[J]. Vojnotehnički glasnik/Military Technical Courier, 2018, 66(3): 580-596. |
23 | MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]// Proceedings of the 2015 Military Communications and Information Systems Conference. Piscataway: IEEE, 2015: 1-6. |
24 | SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2018: 108-116. |
25 | DONG B, WANG X. Comparison deep learning method to traditional methods using for network intrusion detection[C]// Proceedings of the 8th IEEE International Conference on Communication Software and Networks. Piscataway: IEEE, 2016: 581-585. |
26 | DENG L. A tutorial survey of architectures, algorithms, and applications for deep learning[J]. APSIPA Transactions on Signal and Information Processing, 2014, 3: No.e2. |
27 | KASONGO S M. A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework[J]. Computer Communications, 2023, 199: 113-125. |
28 | WEI W, CHEN Y, LIN Q, et al. Multi-objective evolving long-short term memory networks with attention for network intrusion detection[J]. Applied Soft Computing, 2023, 139: No.110216. |
29 | DONKOL AA E B, HAFEZ A G, HUSSEIN A I, et al. Optimization of intrusion detection using likely point PSO and enhanced LSTM-RNN hybrid technique in communication networks[J]. IEEE Access, 2023, 11: 9469-9482. |
30 | SYED N F, GE M, BAIG Z. Fog-cloud based intrusion detection system using Recurrent Neural Networks and feature selection for IoT networks[J]. Computer Networks, 2023, 225: No.109662. |
31 | MUSHTAQ E, ZAMEER A, UMER M, et al. A two-stage intrusion detection system with auto-encoder and LSTMs[J]. Applied Soft Computing, 2022, 121: No.108768. |
32 | MUSHTAQ E, ZAMEER A, NASIR R. Knacks of a hybrid anomaly detection model using deep auto-encoder driven gated recurrent unit[J]. Computer Networks, 2023, 226: No.109681. |
33 | KANNA P R, SANTHI P. Hybrid intrusion detection using MapReduce based black widow optimized convolutional long short-term memory neural networks[J]. Expert Systems with Applications, 2022, 194: No.116545. |
34 | UDAS P B, KARIM M E, ROY K S. SPIDER:a shallow PCA based network intrusion detection system with enhanced recurrent neural networks[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(10 Pt B): 10246-10272. |
35 | WANG W, DU X, SHAN D, et al. Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine[J]. IEEE Transactions on Cloud Computing, 2022, 10(3): 1634-1646. |
36 | MUHAMMAD G, HOSSAIN M S, GARG S. Stacked autoencoder-based intrusion detection system to combat financial fraudulent[J]. IEEE Internet of Things Journal, 2023, 10(3): 2071-2078. |
37 | BALASUBRAMANIAM S, VIJESH JOE C, SIVAKUMAR T A, et al. Optimization enabled deep learning-based DDoS attack detection in cloud computing[J]. International Journal of Intelligent Systems, 2023, 2023: No.2039217. |
38 | LIU C, ANTYPENKO R, SUSHKO I, et al. Intrusion detection system after data augmentation schemes based on the VAE and CVAE[J]. IEEE Transactions on Reliability, 2022, 71(2): 1000-1010. |
39 | BOPPANA T K, BAGADE P. GAN-AE: an unsupervised intrusion detection system for MQTT networks[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105805. |
40 | VAIYAPURI T, BINBUSAYYIS A. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation[J]. PeerJ Computer Science, 2020, 6: No.e327. |
41 | COLI G O, AINA S, OKEGBILE S D, et al. DDoS attacks detection in the IoT using deep Gaussian-Bernoulli restricted Boltzmann machine[J]. Modern Applied Science, 2022, 16(2): 12-22. |
42 | DE ROSA G H, RODER M, SANTOS D F S, et al. Enhancing anomaly detection through restricted Boltzmann machine features projection[J]. International Journal of Information Technology, 2021, 13(1): 49-57. |
43 | HONG L, HAN B. Intrusion detection method based on constrained Boltzmann machine and delayed decision[C]// Proceedings of the 6th International Conference on Electronic Information Technology and Computer Engineering. New York: ACM, 2022: 979-985. |
44 | MAYURANATHAN M, MURUGAN M, DHANAKOTI V. RETRACTED ARTICLE: best features based intrusion detection system by RBM model for detecting DDoS in cloud environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3): 3609-3619. |
45 | ZHANG H, LI Y, LV Z, et al. A real-time and ubiquitous network attack detection based on deep belief network and support vector machine[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 790-799. |
46 | CHEN A, FU Y, ZHENG X, et al. An efficient network behavior anomaly detection using a hybrid DBN-LSTM network[J]. Computers and Security, 2022, 114: No.102600. |
47 | SARKAR N, KESERWANI P K, GOVIL M C. A better and fast cloud intrusion detection system using improved squirrel search algorithm and modified deep belief network[J]. Cluster Computing, 2024, 27: 1699-1718. |
48 | ALISSA K A, SHAIBA H, GADDAH A, et al. Feature subset selection hybrid deep belief network based cybersecurity intrusion detection model[J]. Electronics, 2022, 11(19): No.3077. |
49 | KANUMALLI S S, LAVANYA K, RAJESWARI A, et al. A scalable network intrusion detection system using Bi-LSTM and CNN[C]// Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy. Piscataway: IEEE, 2023: 1-6. |
50 | CHEN Y, LIN Q, WEI W, et al. Intrusion detection using multi-objective evolutionary convolutional neural network for internet of things in fog computing[J]. Knowledge-Based Systems, 2022, 244: No.108505. |
51 | WU Y, NIE L, WANG S, et al. Intelligent intrusion detection for internet of things security: a deep convolutional generative adversarial network-enabled approach[J]. IEEE Internet of Things Journal, 2023, 10(4): 3094-3106. |
52 | ULLAH F, ULLAH S, SRIVASTAVA G, et al. IDS-INT: intrusion detection system using transformer-based transfer learning for imbalanced network traffic[J]. Digital Communications and Networks, 2024, 10(1): 190-204. |
53 | REN K, YUAN S, ZHANG C, et al. CANET:a hierarchical CNN-Attention model for network intrusion detection[J]. Computer Communications, 2023, 205: 170-181. |
54 | EL-GHAMRY A, DARWISH A, HASSANIEN A E. An optimized CNN-based intrusion detection system for reducing risks in smart farming[J]. Internet of Things, 2023, 22: No.100709. |
55 | CHEN C, SONG Y, YUE S, et al. FCNN-SE: an intrusion detection model based on a fusion CNN and stacked ensemble[J]. Applied Sciences, 2022, 12(17): No.8601. |
56 | PINGALE S V, SUTAR S R. Remora based Deep Maxout Network model for network intrusion detection using Convolutional Neural Network features[J]. Computers and Electrical Engineering, 2023, 110: No.108831. |
57 | PARK C, LEE J, KIM Y, et al. An enhanced AI-based network intrusion detection system using generative adversarial networks[J]. IEEE Internet of Things Journal, 2023, 10(3): 2330-2345. |
58 | YUAN L, YU S, YANG Z, et al. A data balancing approach based on generative adversarial network[J]. Future Generation Computer Systems, 2023, 141: 768-776. |
59 | ZHU N, ZHAO G, YANG Y, et al. AEC_GAN: unbalanced data processing decision-making in network attacks based on ACGAN and machine learning[J]. IEEE Access, 2023, 11: 52452-52465. |
60 | LO W W, LAYEGHY S, SARHAN M, et al. E-GraphSAGE: a graph neural network based intrusion detection system for IoT[C]// Proceedings of the 2022 IEEE/IFIP Network Operations and Management Symposium. Piscataway: IEEE, 2022: 1-9. |
61 | LAN J, LU J Z, WAN G G, et al. E-minBatch GraphSAGE: an industrial internet attack detection model[J]. Security and Communication Networks, 2022, 2022: No.5363764. |
62 | CHANG L, BRANCO P. Graph-based solutions with residuals for intrusion detection: the modified E-GraphSAGE and E-ResGAT algorithm[EB/OL]. [2023-12-10].. |
63 | CAVILLE E, LO W W, LAYEGHY S, et al. Anomal-E: a self-supervised network intrusion detection system based on graph neural networks[J]. Knowledge-Based Systems, 2022, 258: No.110030. |
64 | ALTAF T, WANG X, NI W, et al. NE-GConv: a lightweight node edge graph convolutional network for intrusion detection[J]. Computers and Security, 2023, 130: No.103285. |
65 | DUAN G, LV H, WANG H, et al. Application of a dynamic line graph neural network for intrusion detection with semisupervised learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 699-714. |
66 | ZHANG Y, YANG C, HUANG K, et al. Intrusion detection of industrial internet-of-things based on reconstructed graph neural networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2894-2905. |
67 | WANG Y, HAN Z, LI J, et al. BS-GAT: behavior similarity based graph attention network for network intrusion detection[EB/OL]. [2023-12-10].. |
68 | KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset[J]. IEEE Communications Surveys and Tutorials, 2016, 18(1): 184-208. |
69 | GOH J, ADEPU S, JUNEJO K N, et al. A dataset to support research in the design of secure water treatment systems[C]// Proceedings of the 2016 International Conference on Critical Information Infrastructures Security, LNCS 10242. Cham: Springer, 2017: 88-99. |
70 | KORONIOTIS N, MOUSTAFA N, SITNIKOVA E, et al. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset[J]. Future Generation Computer Systems, 2019, 100: 779-796. |
71 | MOUSTAFA N. A new distributed architecture for evaluating AI-based security systems at the edge: network TON_IoT datasets[J]. Sustainable Cities and Society, 2021, 72: No.102994. |
72 | SARHAN M, LAYEGHY S, PORTMANN M. Towards a standard feature set for network intrusion detection system datasets[J]. Mobile Networks and Applications, 2022, 27(1): 357-370. |
73 | SARHAN M, LAYEGHY S, MOUSTAFA N, et al. NetFlow datasets for machine learning-based network intrusion detection systems[C]// Proceedings of the 2020 International Conference on Big Data Technologies and Application, LNICST 371. Cham: Springer, 2021: 117-135. |
74 | GADZE J D, BAMFO-ASANTE A A, AGYEMANG J O, et al. An investigation into the application of deep learning in the detection and mitigation of DDOS attack on SDN controllers[J]. Technologies, 2021, 9(1): No.14. |
75 | MAEDA S, KANAI A, TANIMOTO S, et al. A botnet detection method on SDN using deep learning[C]// Proceedings of the 2019 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2019: 1-6. |
76 | SAHOO K S, TRIPATHY B K, NAIK K, et al. An evolutionary SVM model for DDOS attack detection in software defined networks[J]. IEEE Access, 2020, 8: 132502-132513. |
77 | CHAABOUNI N, MOSBAH M, ZEMMARI A, et al. Network intrusion detection for IoT security based on learning techniques[J]. IEEE Communications Surveys and Tutorials, 2019, 21(3): 2671-2701. |
78 | ROY S, LI J, CHOI B J, et al. A lightweight supervised intrusion detection mechanism for IoT networks[J]. Future Generation Computer Systems, 2022, 127: 276-285. |
79 | SWARNA PRIYA R M, MADDIKUNTA P K R, PARIMALA M, et al. An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture[J]. Computer Communications, 2020, 160: 139-149. |
80 | DAVAHLI A, SHAMSI M, ABAEI G. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(11): 5581-5609. |
81 | LI W, MENG W, AU M H. Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments[J]. Journal of Network and Computer Applications, 2020, 161: No.102631. |
82 | MOIZUDDIN M, VICTOR JOSE M. A bio-inspired hybrid deep learning model for network intrusion detection[J]. Knowledge-Based Systems, 2022, 238: No.107894. |
83 | LAMPE B, MENG W. A survey of deep learning-based intrusion detection in automotive applications[J]. Expert Systems with Applications, 2023, 221: No.119771. |
84 | HAN M L, KWAK B I, KIM H K. Event-triggered interval-based anomaly detection and attack identification methods for an in-vehicle network[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2941-2956. |
85 | AVATEFIPOUR O, AL-SUMAITI A S, EL-SHERBEENY A M, et al. An intelligent secured framework for cyberattack detection in electric vehicles’ CAN bus using machine learning[J]. IEEE Access, 2019, 7: 127580-127592. |
86 | SONG H M, WOO J, KIM H K. In-vehicle network intrusion detection using deep convolutional neural network[J]. Vehicular Communications, 2020, 21: No.100198. |
87 | JEDH M, OTHMANE L BEN, AHMED N, et al. Detection of message injection attacks onto the can bus using similarities of successive messages-sequence graphs[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4133-4146. |
88 | HANSELMANN M, STRAUSS T, DORMANN K, et al. CANet: an unsupervised intrusion detection system for high dimensional CAN bus data[J]. IEEE Access, 2020, 8: 58194-58205. |
89 | ABDULGANIYU O H, TCHAKOUCHT T AIT, SAHEED Y K. A systematic literature review for network Intrusion Detection System (IDS)[J]. International Journal of Information Security, 2023, 22(5): 1125-1162. |
90 | QASSIM Q, PATEL A, MOHD-ZIN A. Strategy to reduce false alarms in intrusion detection and prevention systems[J]. The International Arab Journal of Information Technology, 2014, 11(5): 500-506. |
91 | AHMAD R, ALSMADI I, ALHAMDANI W, et al. Zero-day attack detection: a systematic literature review[J]. Artificial Intelligence Review, 2023, 56(10): 10733-10811. |
92 | DUESSEL P, GEHL C, FLEGEL U, et al. Detecting zero-day attacks using context-aware anomaly detection at the application-layer[J]. International Journal of Information Security, 2017, 16(5): 475-490. |
93 | NETO E C P, DADKHAH S, FERREIRA R, et al. CICIoT2023: a real-time dataset and benchmark for large-scale attacks in IoT environment[J]. Sensors, 2023, 23(13): No.5941. |
94 | ALDRIBI A, TRAORE I, QUINAN P G, et al. Documentation for the ISOT Cloud Intrusion Detection benchmark dataset (ISOT-CID)[EB/OL]. [2023-12-10].. |
95 | MIAH M O, SHAHRIAR KHAN S, SHATABDA S, et al. Improving detection accuracy for imbalanced network intrusion classification using cluster-based under-sampling with random forests[C]// Proceedings of the 1st International Conference on Advances in Science, Engineering and Robotics Technology. Piscataway: IEEE, 2019: 1-5. |
96 | HE M, HUANG Y, WANG X, et al. A lightweight and efficient IoT intrusion detection method based on feature grouping[J]. IEEE Internet of Things Journal, 2024, 11(2): 2935-2949. |
97 | JANATI IDRISSI M, ALAMI H, MAHDAOUY A EL, et al. Fed-ANIDS: federated learning for anomaly-based network intrusion detection systems[J]. Expert Systems with Applications, 2023, 234: No.121000. |
98 | LI S, CAO Y, LIU S, et al. HDA-IDS:a Hybrid DoS Attacks Intrusion Detection System for IoT by using semi-supervised CL-GAN[J]. Expert Systems with Applications, 2024, 238(Pt F): No.122198. |
99 | LATIF S, BOULILA W, KOUBAA A, et al. DTL-IDS: an optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic Algorithm[J]. Journal of Network and Computer Applications, 2024, 221: No.103784. |
100 | 李贝贝,宋佳芮,杜卿芸,等. DRL-IDS:基于深度强化学习的工业物联网入侵检测系统[J]. 计算机科学, 2021, 48(7): 47-54. |
LI B B, SONG J R, DU Q Y, et al. DRL-IDS: deep reinforcement learning based intrusion detection system for Industrial Internet of Things[J]. Computer Science, 2021, 48(7): 47-54. | |
101 | MOHY-EDDINE M, GUEZZAZ A, BENKIRANE S, et al. An effective intrusion detection approach based on ensemble learning for IIoT edge computing[J]. Journal of Computer Virology and Hacking Techniques, 2023, 19: 469-481. |
102 | ASHARF J, MOUSTAFA N, KHURSHID H, et al. A review of intrusion detection systems using machine and deep learning in internet of things: challenges, solutions and future directions[J]. Electronics, 2020, 9(7): No.1177. |
[1] | Zhiqiang REN, Xuebin CHEN. FedAud: adaptive defense mechanism based on historical model updates [J]. Journal of Computer Applications, 2025, 45(2): 490-496. |
[2] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[3] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[4] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[5] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[6] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[7] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[8] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[9] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[10] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
[11] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[12] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[13] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[14] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[15] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||