Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1511-1519.DOI: 10.11772/j.issn.1001-9081.2024050675
• Artificial intelligence • Previous Articles
Jie HU1,2,3, Shuaixing WU1, Zhilan CAO1,2,3(), Yan ZHANG1,2,3
Received:
2024-05-27
Revised:
2024-08-09
Accepted:
2024-08-30
Online:
2024-09-05
Published:
2025-05-10
Contact:
Zhilan CAO
About author:
HU Jie, born in 1977, Ph. D., professor. Her research interests include complex semantic big data management, natural language processing.Supported by:
胡婕1,2,3, 武帅星1, 曹芝兰1,2,3(), 张龑1,2,3
通讯作者:
曹芝兰
作者简介:
胡婕(1977—),女,湖北汉川人,教授,博士,主要研究方向:复杂语义大数据管理、自然语言处理基金资助:
CLC Number:
Jie HU, Shuaixing WU, Zhilan CAO, Yan ZHANG. Named entity recognition model based on global information fusion and multi-dimensional relation perception[J]. Journal of Computer Applications, 2025, 45(5): 1511-1519.
胡婕, 武帅星, 曹芝兰, 张龑. 基于全域信息融合和多维关系感知的命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1511-1519.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050675
信息 | 集合划分 | 样本数 | ||||||
---|---|---|---|---|---|---|---|---|
OntoNotes 4.0 | MSRA | Resume NER | Weibo NER | CoNLL 2003 | GENIA | CADEC | ||
句子数 | 训练集 | 15 736 | 46 471 | 3 819 | 1 350 | 17 291 | 15 023 | 5 340 |
验证集 | 4 306 | 4 376 | 463 | 270 | 3 453 | 1 669 | 1 097 | |
测试集 | 4 351 | 4 376 | 477 | 270 | 3 453 | 1 854 | 1 160 | |
实体数 | 训练集 | 13 372 | 74 703 | 13 438 | 1 855 | 29 441 | 45 144 | 4 428 |
验证集 | 6 950 | 6 181 | 1 497 | 379 | 5 648 | 5 365 | 898 | |
测试集 | 7 684 | 6 181 | 1 630 | 409 | 5 648 | 5 506 | 990 |
Tab. 1 Statistical information of experimental datasets
信息 | 集合划分 | 样本数 | ||||||
---|---|---|---|---|---|---|---|---|
OntoNotes 4.0 | MSRA | Resume NER | Weibo NER | CoNLL 2003 | GENIA | CADEC | ||
句子数 | 训练集 | 15 736 | 46 471 | 3 819 | 1 350 | 17 291 | 15 023 | 5 340 |
验证集 | 4 306 | 4 376 | 463 | 270 | 3 453 | 1 669 | 1 097 | |
测试集 | 4 351 | 4 376 | 477 | 270 | 3 453 | 1 854 | 1 160 | |
实体数 | 训练集 | 13 372 | 74 703 | 13 438 | 1 855 | 29 441 | 45 144 | 4 428 |
验证集 | 6 950 | 6 181 | 1 497 | 379 | 5 648 | 5 365 | 898 | |
测试集 | 7 684 | 6 181 | 1 630 | 409 | 5 648 | 5 506 | 990 |
数据集 | 评价指标 | Lattice-LSTM | FLAT | SoftLexicon | W2NER | Boundary Smooth | DiffusionNER | Biaffine | BARTNER | Locate and Label | Triaffine | GPT-NER | 本文模型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OntoNotes 4.0 | P | 76.35 | — | 83.41 | 82.31 | 81.65 | — | — | — | — | — | — | 84.05 |
R | 71.56 | — | 82.21 | 83.36 | 84.03 | — | — | — | — | — | — | 82.68 | |
F1 | 73.88 | 81.82 | 82.81 | 83.08 | 82.83 | — | — | — | — | — | — | 83.36 | |
MSRA | P | 93.58 | — | 95.75 | 96.12 | 96.37 | 95.71 | — | — | — | — | — | 96.37 |
R | 92.79 | — | 95.10 | 96.08 | 96.15 | 94.11 | — | — | — | — | — | 96.34 | |
F1 | 93.18 | 96.09 | 95.42 | 96.10 | 96.26 | 94.91 | — | — | — | — | — | 96.36 | |
Resume NER | P | 94.81 | — | 96.08 | 96.96 | 96.63 | — | — | — | — | — | — | 96.69 |
R | 94.11 | — | 96.13 | 96.35 | 96.69 | — | — | — | — | — | — | 96.81 | |
F1 | 94.46 | 95.86 | 96.11 | 96.65 | 96.66 | — | — | — | — | — | — | 96.75 | |
Weibo NER | P | 53.04 | — | 70.94 | 70.84 | 70.16 | — | — | — | — | — | — | 76.07 |
R | 62.25 | — | 67.02 | 73.87 | 75.36 | — | — | — | — | — | — | 72.95 | |
F1 | 58.79 | 68.55 | 70.50 | 72.32 | 72.66 | — | — | — | — | — | — | 74.48 | |
CoNLL 2003 | P | — | — | — | 92.71 | 93.61 | 92.99 | 92.46 | 92.61 | — | — | 88.54 | 93.83 |
R | — | — | — | 93.44 | 93.68 | 92.56 | 92.67 | 93.87 | — | — | 91.40 | 94.16 | |
F1 | — | — | — | 93.07 | 93.65 | 92.78 | 92.55 | 93.24 | — | — | 89.97 | 93.99 | |
GENIA | P | — | — | — | 83.10 | — | 82.10 | 78.20 | 78.57 | 80.19 | 80.42 | 61.38 | 82.54 |
R | — | — | — | 79.76 | — | 80.97 | 78.20 | 79.30 | 80.89 | 82.06 | 66.74 | 82.10 | |
F1 | — | — | — | 81.39 | — | 81.53 | 78.20 | 78.93 | 80.54 | 81.23 | 64.06 | 82.32 | |
CADEC | P | — | — | — | 74.09 | — | — | — | 70.08 | — | — | — | 79.77 |
R | — | — | — | 72.35 | — | — | — | 71.21 | — | — | — | 68.89 | |
F1 | — | — | — | 73.21 | — | — | — | 70.64 | — | — | — | 73.93 |
Tab. 2 Evaluation index comparison of different models
数据集 | 评价指标 | Lattice-LSTM | FLAT | SoftLexicon | W2NER | Boundary Smooth | DiffusionNER | Biaffine | BARTNER | Locate and Label | Triaffine | GPT-NER | 本文模型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OntoNotes 4.0 | P | 76.35 | — | 83.41 | 82.31 | 81.65 | — | — | — | — | — | — | 84.05 |
R | 71.56 | — | 82.21 | 83.36 | 84.03 | — | — | — | — | — | — | 82.68 | |
F1 | 73.88 | 81.82 | 82.81 | 83.08 | 82.83 | — | — | — | — | — | — | 83.36 | |
MSRA | P | 93.58 | — | 95.75 | 96.12 | 96.37 | 95.71 | — | — | — | — | — | 96.37 |
R | 92.79 | — | 95.10 | 96.08 | 96.15 | 94.11 | — | — | — | — | — | 96.34 | |
F1 | 93.18 | 96.09 | 95.42 | 96.10 | 96.26 | 94.91 | — | — | — | — | — | 96.36 | |
Resume NER | P | 94.81 | — | 96.08 | 96.96 | 96.63 | — | — | — | — | — | — | 96.69 |
R | 94.11 | — | 96.13 | 96.35 | 96.69 | — | — | — | — | — | — | 96.81 | |
F1 | 94.46 | 95.86 | 96.11 | 96.65 | 96.66 | — | — | — | — | — | — | 96.75 | |
Weibo NER | P | 53.04 | — | 70.94 | 70.84 | 70.16 | — | — | — | — | — | — | 76.07 |
R | 62.25 | — | 67.02 | 73.87 | 75.36 | — | — | — | — | — | — | 72.95 | |
F1 | 58.79 | 68.55 | 70.50 | 72.32 | 72.66 | — | — | — | — | — | — | 74.48 | |
CoNLL 2003 | P | — | — | — | 92.71 | 93.61 | 92.99 | 92.46 | 92.61 | — | — | 88.54 | 93.83 |
R | — | — | — | 93.44 | 93.68 | 92.56 | 92.67 | 93.87 | — | — | 91.40 | 94.16 | |
F1 | — | — | — | 93.07 | 93.65 | 92.78 | 92.55 | 93.24 | — | — | 89.97 | 93.99 | |
GENIA | P | — | — | — | 83.10 | — | 82.10 | 78.20 | 78.57 | 80.19 | 80.42 | 61.38 | 82.54 |
R | — | — | — | 79.76 | — | 80.97 | 78.20 | 79.30 | 80.89 | 82.06 | 66.74 | 82.10 | |
F1 | — | — | — | 81.39 | — | 81.53 | 78.20 | 78.93 | 80.54 | 81.23 | 64.06 | 82.32 | |
CADEC | P | — | — | — | 74.09 | — | — | — | 70.08 | — | — | — | 79.77 |
R | — | — | — | 72.35 | — | — | — | 71.21 | — | — | — | 68.89 | |
F1 | — | — | — | 73.21 | — | — | — | 70.64 | — | — | — | 73.93 |
模型 | OntoNotes 4.0 | Weibo NER | CoNLL 2003 | Resume NER | MSRA | GENIA | CADEC |
---|---|---|---|---|---|---|---|
本文模型 | 83.36 | 74.48 | 93.99 | 96.75 | 96.36 | 82.32 | 73.93 |
-BERT | 58.09 | 52.31 | 47.49 | 93.74 | 74.89 | 39.27 | 39.30 |
-梯度稳定层 | 82.63 | 73.21 | 93.33 | 96.46 | 96.23 | 81.94 | 73.50 |
-特征融合 | 82.96 | 74.05 | 93.69 | 96.42 | 96.20 | 81.83 | 73.54 |
-多维关系感知结构 | 82.74 | 73.66 | 93.66 | 96.43 | 96.26 | 82.02 | 73.61 |
-自适应焦点损失函数 | 82.68 | 73.80 | 93.73 | 96.66 | 96.24 | 82.13 | 73.73 |
Tab. 3 F1 values in ablation experiments
模型 | OntoNotes 4.0 | Weibo NER | CoNLL 2003 | Resume NER | MSRA | GENIA | CADEC |
---|---|---|---|---|---|---|---|
本文模型 | 83.36 | 74.48 | 93.99 | 96.75 | 96.36 | 82.32 | 73.93 |
-BERT | 58.09 | 52.31 | 47.49 | 93.74 | 74.89 | 39.27 | 39.30 |
-梯度稳定层 | 82.63 | 73.21 | 93.33 | 96.46 | 96.23 | 81.94 | 73.50 |
-特征融合 | 82.96 | 74.05 | 93.69 | 96.42 | 96.20 | 81.83 | 73.54 |
-多维关系感知结构 | 82.74 | 73.66 | 93.66 | 96.43 | 96.26 | 82.02 | 73.61 |
-自适应焦点损失函数 | 82.68 | 73.80 | 93.73 | 96.66 | 96.24 | 82.13 | 73.73 |
1 | 邓依依,邬昌兴,魏永丰,等. 基于深度学习的命名实体识别综述[J]. 中文信息学报, 2021, 35(9):30-45. |
DENG Y Y, WU C X, WEI Y F, et al. A survey on named entity recognition based on deep learning[J]. Journal of Chinese Information Processing, 2021, 35(9): 30-45. | |
2 | 冯艳红,于红,孙庚,等. 基于BLSTM的命名实体识别方法[J]. 计算机科学, 2018, 45(2):261-268. |
FENG Y H, YU H, SUN G, et al. Named entity recognition method based on BLSTM[J]. Computer Science, 2018, 45(2): 261-268. | |
3 | LIU Y, MENG F, ZHANG J, et al. GCDT: a global context enhanced deep transition architecture for sequence labeling[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2431-2441. |
4 | SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 2488-2498. |
5 | 范西朋,刘云飞,李盛阳,等. 基于MRC动态数据生成的命名实体识别方法[J]. 中文信息学报, 2023, 37(6):104-114. |
FAN X P, LIU Y F, LI S Y, et al. A MRC dynamic data generation method for NER tasks[J]. Journal of Chinese Information Processing, 2023, 37(6): 104-114. | |
6 | ZHANG Y, WEI X S, ZHOU B, et al. Bag of tricks for long-tailed visual recognition with deep convolutional neural networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3447-3455. |
7 | BIKEL D M, MILLER S, SCHWARTZ R, et al. Nymble: a high-performance learning name-finder[C]// Proceedings of the 5th Conference on Applied Natural Language Processing. Stroudsburg: ACL, 1997: 194-201. |
8 | BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34(1/2/3): 211-231. |
9 | LAFFERTY J, McCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289. |
10 | SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. |
11 | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1554-1564. |
12 | LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice Transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842. |
13 | MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5951-5960. |
14 | 蔡宇翔,骆妲,甘洋镭,等.基于跨度边界感知的嵌套命名实体识别[J].软件学报,2024,35(11):5149-5162. |
CAI Y X, LUO D, GAN Y L, et al. Nested named entity recognition based on span boundary perception[J]. Journal of Software, 2024, 35(11): 5149-5162. | |
15 | YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476. |
16 | SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2782-2794. |
17 | ZHU E, LI J. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 7096-7108. |
18 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-09-29].. |
19 | YAN H, GUI T, DAI J, et al. A unified generative framework for various NER subtasks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 5808-5822. |
20 | YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186. |
21 | LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 10965-10973. |
22 | SHEN Y, SONG K, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 3875-3890. |
23 | WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2024-05-07].. |
24 | LIU R, WEI J, JIA C, et al. Modulating language models with emotions[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 4332-4339. |
25 | LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21002-21012. |
[1] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
[2] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[3] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
[4] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[5] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[6] | Xiaoyan ZHANG, Zhengyu DUAN. Cross-lingual zero-resource named entity recognition model based on sentence-level generative adversarial network [J]. Journal of Computer Applications, 2023, 43(8): 2406-2411. |
[7] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
[8] | Jie HU, Yan HU, Mengchi LIU, Yan ZHANG. Chinese named entity recognition based on knowledge base entity enhanced BERT model [J]. Journal of Computer Applications, 2022, 42(9): 2680-2685. |
[9] | Guanyou XU, Weisen FENG. Python named entity recognition model based on transformer [J]. Journal of Computer Applications, 2022, 42(9): 2693-2700. |
[10] | Yayao ZUO, Haoyu CHEN, Zhiran CHEN, Jiawei HONG, Kun CHEN. Named entity recognition method combining multiple semantic features [J]. Journal of Computer Applications, 2022, 42(7): 2001-2008. |
[11] | Yi ZHANG, Shuangsheng WANG, Bin HE, Peiming YE, Keqiang LI. Named entity recognition method of elementary mathematical text based on BERT [J]. Journal of Computer Applications, 2022, 42(2): 433-439. |
[12] | Lanlan ZENG, Yisong WANG, Panfeng CHEN. Named entity recognition based on BERT and joint learning for judgment documents [J]. Journal of Computer Applications, 2022, 42(10): 3011-3017. |
[13] | Yue WANG, Mengxuan WANG, Sheng ZHANG, Wen DU. Alarm text named entity recognition based on BERT [J]. Journal of Computer Applications, 2020, 40(2): 535-540. |
[14] | YAN Hong, CHEN Xingshu, WANG Wenxian, WANG Haizhou, YIN Mingyong. Recognition model for French named entities based on deep neural network [J]. Journal of Computer Applications, 2019, 39(5): 1288-1292. |
[15] | ZHOU Xiang, LI Shaobo, YANG Guanci. Entity recognition of clothing commodity attributes [J]. Journal of Computer Applications, 2015, 35(7): 1945-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||