Journal of Computer Applications

    Next Articles

Few-shot Named Entity Recognition Based on Decomposed Fuzzy Span

ZENG Biqing1, ZHONG Guangbin1, WEN James Zhiqing2   

  1. 1.School of Software, South China Normal University, Foshan Guangdong 528225, China;
    2.Robot Engineering Research Center, JIHUA Laboratory, Foshan Guangdong 528200, China

  • Received:2024-05-09 Revised:2024-07-18 Accepted:2024-07-19 Online:2024-07-25 Published:2024-07-25
  • About author:ZENG Biqing, born in 1969, Ph. D., professor. His research interests include natural language processing and artificial intelligence. ZHONG Guangbin, born in 1998, M. S. candidate. His research interests include natural language processing and few-shot named entity recognition. WEN James Zhiqing, born in 1964, Ph. D., professor of engineering. His research interests include artificial intelligence, machine vision, and optoelectronic technology.
  • Supported by:
    This work is partially supported by National Natural Science
    Foundation of China (62076103), Guangdong Basic and Applied
    Basic Research Foundation (2021A1515011171), Guangzhou
    Basic Research Program Basic and Applied Basic Research
    Project (202102080282), Foshan Key Science and Technology
    Research Project (2020001006807).

基于分解式模糊跨度的小样本命名实体识别

曾碧卿1钟广彬1温志庆2   

  1. 1.华南师范大学 软件学院,广东 佛山 528225;  2.季华实验室 机器人工程研究中心,广东 佛山 528200
  • 通讯作者: 曾碧卿
  • 作者简介:曾碧卿(1969—),男,湖南衡南人,教授,博士,CCF 杰出会员,主要研究方向:自然语言处理、人工智能;钟广 彬(1998—),男,广东梅州人,硕士研究生,主要研究方向:自然语言处理、小样本命名实体识别;温志庆(1964—),男,山 东招远人,正高级工程师/教授,博士,主要研究方向:人工智能、机器视觉、光电技术、机器人。
  • 基金资助:
    国家自然科学基金项目(62076103);广东省基础与应用基础研究基金项目(2021A1515011171);广州市基础研究计划
    基础与应用基础研究项目
    (202102080282);佛山市重点领域科技攻关项目(2020001006807)

Abstract: Few-shot Named Entity Recognition aims to identify entity spans and types in text based on a small amount of labeled
data. Recently, span-based metric learning has achieved promising results, but there are still two issues: first, prototypes may be pulled away from the center of the cluster due to a small number of candidate spans; second, some non-entity spans may be produced by span detectors that are irrelevant to the categories. To address these issues, a decomposed model integrating fuzzy span, namely DFSM, was proposed for few-shot NER. In the span detection stage, to learn explicit entity boundary information without being affected by label dependency at the token level, a global boundary matrix was used by DFSM to detect candidate spans; In the span classification stage, to increase the number of trainable candidate spans for each entity type, a fuzzy span strategy was proposed to adjust the boundary range of candidate spans. Meanwhile, prototypical contrastive learning was designed to optimize the span-based semantic representation space; Additionally, to eliminate the interference of non-entity noise data, prototypical margin learning was introduced to enlarge the distance between non-entity spans and prototypes. Experimental results on the Few-NERD and CrossNER datasets show that compared to the baseline model TadNER, the average F1 score of DFSM in Few-NERD Inter increases by 8.52%, especially in Inter 10 way 5~10 shot, where the F1 score increases by 10.39%, indicating its superior recognition ability for fine-grained entity types. Compared to the baseline model DecomMeta, the average F1 score of DFSM increases by 3.32% and 1.09% in CrossNER 1-shot and 5-shot, respectively, demonstrating its good generalization ability in cross-domain low-resource scenarios.

Key words: named entity recognition, few-shot learning, prototypical network, global boundary matrix, fuzzy span

摘要: 小样本命名实体识别(few-shot NER)旨在基于少量标记数据识别文本中实体跨度和类型。近期,基于跨度的度量学
习取得了不错的效果,但仍然存在以下个问题:一是少量的候选跨度可能导致原型偏离群组的中心;二是与类别无关的跨度
检测器会产生一些非实体跨度。为了解决以上问题,提出一种用于
few-shot NER 的融合模糊跨度的分解式模型 DFSM
(Decomposed Fuzzy Span Model)
。在跨度检测阶段,为学习明确的实体边界信息,而不受标记级别的标签依赖影响,DFSM
用全局边界矩阵检测候选跨度;而在跨度分类阶段,为增加可训练的每种实体类型候选跨度数量,提出一种模糊跨度策略以
调整候选跨度的边界范围。同时,设计了一种原型对比学习以优化基于跨度的语义表示空间;此外,为消除非实体噪声数据
的干扰,引入原型边界学习以扩大非实体跨度与原型的距离。在
Few-NERD CrossNER 数据集上的实验结果显示,与基线
模型
TadNER 相比,在 Few-NERD Inter 中,DFSM 的平均 F1 值提升了 8.52%,尤其是在 Inter 10 way 5~10-shot 中,F1 值提升
10.39%,这表明 DFSM 对于细粒度实体类型具有更强的识别能力。与基线模型 DecomMeta 相比,在 CrossNER 1-shot 5-shot
中,DFSM 的平均 F1 值分别提升了 3.32%1.09%,这表明它在跨领域低资源场景下具有良好的泛化能力。

关键词: 命名实体识别, 小样本学习, 原型网络, 全局边界矩阵, 模糊跨度

CLC Number: