Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2470-2476.DOI: 10.11772/j.issn.1001-9081.2024081076
• The 21th CCF Conference on Web Information Systems and Applications (WISA 2024) • Previous Articles
Jiaxin YAN1,2,3, Yanping CHEN1,2,3(), Weizhe YANG1,2,3, Ruizhang HUANG1,2,3, Yongbin QIN1,2,3
Received:
2024-08-01
Revised:
2024-08-12
Accepted:
2024-08-15
Online:
2024-09-12
Published:
2025-08-10
Contact:
Yanping CHEN
About author:
YAN Jiaxin, born in 2000, M. S. candidate. His research interests include natural language processing, information extraction.Supported by:
闫家鑫1,2,3, 陈艳平1,2,3(), 杨卫哲1,2,3, 黄瑞章1,2,3, 秦永彬1,2,3
通讯作者:
陈艳平
作者简介:
闫家鑫(2000—),男,四川成都人,硕士研究生,CCF会员,主要研究方向:自然语言处理、信息抽取基金资助:
CLC Number:
Jiaxin YAN, Yanping CHEN, Weizhe YANG, Ruizhang HUANG, Yongbin QIN. Heterogeneous graph attention network for relation extraction based on feature combination[J]. Journal of Computer Applications, 2025, 45(8): 2470-2476.
闫家鑫, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于特征组合的异构图注意力网络关系抽取[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2470-2476.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081076
原子特征 | 函数表示 | 描述 |
---|---|---|
f1 | {f = LeftPosOf(ei )} | 实体i左近邻单词词性 |
f2 | {f = RightPosOf(ei )} | 实体i右近邻单词词性 |
f3 | {f = TypeOf(ei )} | 实体i的类型 |
f4 | {f = SubTypeOf(ei )} | 实体i的子类型 |
f5 | {f = HeadOf(ei )} | 实体i的中心名词 |
f6 | {f = PositionBetween(e1,e2)} | 两实体相对位置关系 |
Tab. 1 Atomic feature set
原子特征 | 函数表示 | 描述 |
---|---|---|
f1 | {f = LeftPosOf(ei )} | 实体i左近邻单词词性 |
f2 | {f = RightPosOf(ei )} | 实体i右近邻单词词性 |
f3 | {f = TypeOf(ei )} | 实体i的类型 |
f4 | {f = SubTypeOf(ei )} | 实体i的子类型 |
f5 | {f = HeadOf(ei )} | 实体i的中心名词 |
f6 | {f = PositionBetween(e1,e2)} | 两实体相对位置关系 |
特征组合 | 函数表示 |
---|---|
F1 | {F = LeftPosOf(e1)⊕TypeOf(e1)} |
F2 | {F = TypeOf(e1)⊕RightPosOf(e1)} |
F3 | {F = LeftPosOf(e2)⊕TypeOf(e2)} |
F4 | {F = TypeOf(e2)⊕RightPosOf(e2)} |
F5 | {F = TypeOf(e1)⊕TypeOf(e2)} |
F6 | {F = SubTypeOf(e1)⊕SubTypeOf(e2)} |
F7 | {F = HeadOf(e1)⊕HeadOf(e2)} |
Tab. 2 Composite feature set
特征组合 | 函数表示 |
---|---|
F1 | {F = LeftPosOf(e1)⊕TypeOf(e1)} |
F2 | {F = TypeOf(e1)⊕RightPosOf(e1)} |
F3 | {F = LeftPosOf(e2)⊕TypeOf(e2)} |
F4 | {F = TypeOf(e2)⊕RightPosOf(e2)} |
F5 | {F = TypeOf(e1)⊕TypeOf(e2)} |
F6 | {F = SubTypeOf(e1)⊕SubTypeOf(e2)} |
F7 | {F = HeadOf(e1)⊕HeadOf(e2)} |
数据集 | 样本数 | 关系数 | ||
---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||
ACE05 | 83 293 | 10 412 | 10 412 | 7 |
SemEval-2010 task 8 | 8 000 | — | 2 717 | 19 |
Tab. 3 Dataset information
数据集 | 样本数 | 关系数 | ||
---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||
ACE05 | 83 293 | 10 412 | 10 412 | 7 |
SemEval-2010 task 8 | 8 000 | — | 2 717 | 19 |
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
FCM[ | 71.52 | 49.32 | 58.26 |
Walk-based[ | 69.70 | 59.50 | 64.20 |
Re-tuning [ | 75.90 | 71.40 | 73.60 |
GCN[ | 68.70 | 65.40 | 67.00 |
FC-GCN[ | 85.64 | 75.95 | 80.50 |
L-GCN[ | 87.09 | 79.79 | 83.28 |
A-GCN[ | — | — | 79.05 |
本文模型 | 89.39 | 79.73 | 84.11 |
Tab. 4 Model results on ACE05 English dataset
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
FCM[ | 71.52 | 49.32 | 58.26 |
Walk-based[ | 69.70 | 59.50 | 64.20 |
Re-tuning [ | 75.90 | 71.40 | 73.60 |
GCN[ | 68.70 | 65.40 | 67.00 |
FC-GCN[ | 85.64 | 75.95 | 80.50 |
L-GCN[ | 87.09 | 79.79 | 83.28 |
A-GCN[ | — | — | 79.05 |
本文模型 | 89.39 | 79.73 | 84.11 |
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
C-GCN[ | — | — | 84.80 |
TaMM[ | — | — | 90.06 |
Mix Attention[ | 91.69 | 89.06 | 90.32 |
A-GCN[ | — | — | 89.85 |
本文模型 | 91.46 | 89.91 | 90.67 |
Tab. 5 Model results on SemEval-2010 task 8 dataset
模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|
C-GCN[ | — | — | 84.80 |
TaMM[ | — | — | 90.06 |
Mix Attention[ | 91.69 | 89.06 | 90.32 |
A-GCN[ | — | — | 89.85 |
本文模型 | 91.46 | 89.91 | 90.67 |
模型 | ACE05 | SemEval-2010 task 8 |
---|---|---|
本文模型 | 84.11 | 90.67 |
-Combined features | 83.08 | 90.06 |
-Cf.Syntactic features | 83.36 | 90.38 |
-Cf.Structural features | 83.50 | 90.40 |
-HGAT | 82.13 | 89.98 |
-Gate mechanism | 83.78 | 90.43 |
Tab. 6 Ablation experimental results (F1-scores)
模型 | ACE05 | SemEval-2010 task 8 |
---|---|---|
本文模型 | 84.11 | 90.67 |
-Combined features | 83.08 | 90.06 |
-Cf.Syntactic features | 83.36 | 90.38 |
-Cf.Structural features | 83.50 | 90.40 |
-HGAT | 82.13 | 89.98 |
-Gate mechanism | 83.78 | 90.43 |
[1] | ZHANG Y, ZHONG V, CHEN D, et al. Position-aware attention and supervised data improve slot filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45. |
[2] | 文坤建,陈艳平,黄瑞章,等. 基于提示学习的生物医学关系抽取方法[J]. 计算机科学, 2023, 50(10): 223-229. |
WEN K J, CHEN Y P, HUANG R Z, et al. Biomedical relationship extraction method based on prompt learning[J]. Computer Science, 2023, 50(10): 223-229. | |
[3] | XIA R, DING Z. Emotion-cause pair extraction: a new task to emotion analysis in texts[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1003-1012. |
[4] | ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2205-2215. |
[5] | GUO Z, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 241-251. |
[6] | CHEN Y, ZHENG Q, CHEN P. A set space model for feature calculus[J]. IEEE Intelligent Systems, 2017, 32(5): 36-42. |
[7] | CHEN Y, WANG G, ZHENG Q, et al. A set space model to capture structural information of a sentence[J]. IEEE Access, 2019, 7: 142515-142530. |
[8] | CHEN Y, ZHENG Q, CHEN P. Feature assembly method for extracting relations in Chinese[J]. Artificial Intelligence, 2015, 228: 179-194. |
[9] | CHEN Y, YANG W, WANG K, et al. A neuralized feature engineering method for entity relation extraction[J]. Neural Networks, 2021, 141: 249-260. |
[10] | WANG H, CHEN Y, YANG W, et al. A two dimensional feature engineering method for relation extraction[EB/OL]. [2024-08-10].. |
[11] | KHAN I, KWON Y W. Multi-class malware detection via deep graph convolutional networks using TF-IDF-based attributed call graphs[C]// Proceedings of the 2023 International Conference on Information Security Applications, LNCS 14402. Singapore: Springer, 2024: 188-200. |
[12] | 杨卫哲,秦永彬,黄瑞章,等. 面向中文关系抽取的句子结构获取方法[J]. 数据采集与处理, 2021, 36(3): 605-620. |
YANG W Z, QIN Y B, HUANG R Z, et al. Sentence structure acquisition method for Chinese relation extraction[J]. Journal of Data Acquisition and Processing, 2021, 36(3):605-620. | |
[13] | HU Y, CHEN Y, HUANG R, et al. A hierarchical convolutional model for biomedical relation extraction[J]. Information Processing and Management, 2024, 61(1): No.103560. |
[14] | 衡红军,徐天宝. 基于多尺度卷积和门控机制的注意力情感分析模型[J]. 计算机应用, 2022, 42(9): 2674-2679. |
HENG H J, XU T B. Attention sentiment analysis model based on multi-scale convolution and gating mechanism[J]. Journal of Computer Applications, 2022, 42(9): 2674-2679. | |
[15] | NGUYEN T H, GRISHMAN R. Combining neural net-works and log-linear models to improve relation extraction[EB/OL]. [2024-08-10].. |
[16] | ZHENG S, XU J, ZHOU P, et al. A neural network frame-work for relation extraction: learning entity semantic and relation pattern[J]. Knowledge-Based Systems, 2016, 114: 12-23. |
[17] | ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg: ACL, 2015: 73-78. |
[18] | TIAN Y, CHEN G, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4458-4471. |
[19] | ZHAO K, XU H, CHENG Y, et al. Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J]. Knowledge-Based Systems, 2021, 219: No.106888. |
[20] | CHEN Y, ZHENG Q, ZHANG W. Omni-word feature and soft constraint for Chinese relation extraction[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2014: 572-581. |
[21] | GORMLEY M R, YU M, DREDZE M. Improved relation extraction with feature-rich compositional embedding models[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1774-1784. |
[22] | CHRISTOPOULOU F, MIWA M, ANANIADOU S. A walk-based model on entity graphs for relation extraction[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2018: 81-88. |
[23] | WU Y, CHEN Y, QIN Y, et al. A recollect-tuning method for entity and relation extraction[J]. Expert Systems with Applications, 2024, 245: No.123000. |
[24] | SUN C, GONG Y, WU Y, et al. Joint type inference on entities and relations via graph convolutional networks[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1361-1370. |
[25] | XU J, CHEN Y, QIN Y, et al. A feature combination-based graph convolutional neural network model for relation extraction[J]. Symmetry, 2021, 13(8): No.1458. |
[26] | XU J, CHEN Y, QIN Y, et al. A learnable graph convolutional neural network model for relation extraction[C]// Proceedings of the 28th China Conference on Information Retrieval, LNCS 13819. Cham: Springer, 2023: 90-104. |
[27] | CHEN G, TIAN Y, SONG Y, et al. Relation extraction with type-aware map memories of word dependencies[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2501-2512. |
[28] | 唐媛,陈艳平,扈应,等. 基于多尺度混合注意力卷积神经网络的关系抽取模型[J]. 计算机应用, 2024, 44(7): 2011-2017. |
TANG Y, CHEN Y P, HU Y, et al. Relation extraction based on multi-scale mixed attention convolutional neural networks[J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[1] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[2] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[3] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
[4] | Dawei YANG, Xihai XU, Wei SONG. Relation extraction method combining semantic enhancement and perception attention [J]. Journal of Computer Applications, 2025, 45(6): 1801-1808. |
[5] | Jie HU, Cui WU, Jun SUN, Yan ZHANG. Document-level relation extraction model based on anaphora and logical reasoning [J]. Journal of Computer Applications, 2025, 45(5): 1496-1503. |
[6] | Jiaxin LI, Site MO. Power work order classification in substation area based on MiniRBT-LSTM-GAT and label smoothing [J]. Journal of Computer Applications, 2025, 45(4): 1356-1362. |
[7] | Bin LI, Min LIN, Siriguleng, Yingjie GAO, Yurong WANG, Shujun ZHANG. Joint entity-relation extraction method for ancient Chinese books based on prompt learning and global pointer network [J]. Journal of Computer Applications, 2025, 45(1): 75-81. |
[8] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[9] | Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network [J]. Journal of Computer Applications, 2025, 45(1): 136-143. |
[10] | Xianglan WU, Yang XIAO, Mengying LIU, Mingming LIU. Text-to-SQL model based on semantic enhanced schema linking [J]. Journal of Computer Applications, 2024, 44(9): 2689-2695. |
[11] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[12] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
[13] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[14] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[15] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||