Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1410-1414.DOI: 10.11772/j.issn.1001-9081.2024060856
• China Conference on Data Mining 2024 (CCDM 2024) • Previous Articles
Sijie NIU1,2(), Yuliang LIU1,2
Received:
2024-06-08
Revised:
2024-09-05
Accepted:
2024-09-10
Online:
2024-10-08
Published:
2025-05-10
Contact:
Sijie NIU
About author:
NIU Sijie, born in 1984, Ph. D., professor. His research interests include pattern recognition, medical image analysis.Supported by:
通讯作者:
牛四杰
作者简介:
牛四杰(1984—),男,山东临沂人,教授,博士,CCF会员,主要研究方向:模式识别、医学影像分析基金资助:
CLC Number:
Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation[J]. Journal of Computer Applications, 2025, 45(5): 1410-1414.
牛四杰, 刘昱良. 基于知识蒸馏双分支结构的视网膜病变辅助诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1410-1414.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060856
方法 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|
ResNet18 | 84.51 | 74.44 | 88.89 |
InceptionV3[ | 83.35 | 81.11 | 84.49 |
EfficientNet[ | 78.39 | 54.44 | 86.64 |
Knowledge Distillation | 86.61 | 81.11 | 88.97 |
WeightedRandomSampler | 86.61 | 77.78 | 90.43 |
Weighted Cross Entropy | 85.56 | 81.11 | 87.43 |
Class Balance Loss[ | 88.72 | 81.11 | 92.25 |
LDAM Loss[ | 88.52 | 83.33 | 90.64 |
LMF Loss[ | 88.72 | 84.44 | 90.51 |
LAM[ | 91.68 | 89.99 | 92.18 |
本文方法 | 92.73 | 89.99 | 93.71 |
Tab. 1 Performance comparison of different methods
方法 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|
ResNet18 | 84.51 | 74.44 | 88.89 |
InceptionV3[ | 83.35 | 81.11 | 84.49 |
EfficientNet[ | 78.39 | 54.44 | 86.64 |
Knowledge Distillation | 86.61 | 81.11 | 88.97 |
WeightedRandomSampler | 86.61 | 77.78 | 90.43 |
Weighted Cross Entropy | 85.56 | 81.11 | 87.43 |
Class Balance Loss[ | 88.72 | 81.11 | 92.25 |
LDAM Loss[ | 88.52 | 83.33 | 90.64 |
LMF Loss[ | 88.72 | 84.44 | 90.51 |
LAM[ | 91.68 | 89.99 | 92.18 |
本文方法 | 92.73 | 89.99 | 93.71 |
Focal Loss | CAM | 知识蒸馏 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|---|---|
84.51 | 74.44 | 88.89 | |||
√ | 86.61 | 84.44 | 87.43 | ||
√ | 87.57 | 84.44 | 89.10 | ||
√ | 86.61 | 81.11 | 88.97 | ||
√ | √ | 89.57 | 87.77 | 90.76 | |
√ | √ | √ | 92.73 | 89.99 | 93.71 |
Tab. 2 Ablation experimental results
Focal Loss | CAM | 知识蒸馏 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|---|---|
84.51 | 74.44 | 88.89 | |||
√ | 86.61 | 84.44 | 87.43 | ||
√ | 87.57 | 84.44 | 89.10 | ||
√ | 86.61 | 81.11 | 88.97 | ||
√ | √ | 89.57 | 87.77 | 90.76 | |
√ | √ | √ | 92.73 | 89.99 | 93.71 |
损失函数 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|
LCE | 87.66 | 83.33 | 88.84 |
LWCE | 87.66 | 86.66 | 87.31 |
LFL | 92.73 | 89.99 | 93.71 |
Tab. 3 Experimental analysis of loss functions for rebalancing branch in student network
损失函数 | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|
LCE | 87.66 | 83.33 | 88.84 |
LWCE | 87.66 | 86.66 | 87.31 |
LFL | 92.73 | 89.99 | 93.71 |
1 | ROGLIC G. WHO global report on diabetes: a summary [J]. International Journal of Noncommunicable Diseases, 2016, 1(1): 3-8. |
2 | TINAJERO M G, MALIK V S. An update on the epidemiology of type 2 diabetes: a global perspective [J]. Endocrinology and Metabolism Clinics, 2021, 50(3): 337-355. |
3 | PAPATHEODOROU K, BANACH M, BEKIARI E, et al. Complications of diabetes 2017 [J]. Journal of Diabetes Research, 2018, 2018: No.3086167. |
4 | TOMIC D, SHAW J E, MAGLIANO D J. The burden and risks of emerging complications of diabetes mellitus [J]. Nature Reviews Endocrinology, 2022, 18(9): 525-539. |
5 | GROSS J L, DE AZEVEDO M J, SILVEIRO S P, et al. Diabetic nephropathy: diagnosis, prevention, and treatment [J]. Diabetes Care, 2005, 28(1): 164-176. |
6 | KIKKAWA R, KOYA D, HANEDA M. Progression of diabetic nephropathy [J]. American Journal of Kidney Diseases, 2003, 41(3S): S19-S21. |
7 | SAGOO M K, GNUDI L. Diabetic nephropathy: an overview [M]// Diabetic nephropathy: methods and protocols, MIMB 2067. New York: Humana, 2020: 3-7. |
8 | VUJOSEVIC S, ALDINGTON S J, SILVA P, et al. Screening for diabetic retinopathy: new perspectives and challenges [J]. The Lancet Diabetes and Endocrinology, 2020, 8(4): 337-347. |
9 | JAWA A, KCOMT J, FONSECA V A. Diabetic nephropathy and retinopathy [J]. Medical Clinics, 2004, 88(4): 1001-1036. |
10 | ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis [J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208. |
11 | ZHOU B, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9719-9728. |
12 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
13 | XIE Y, WAN Q, XIE H, et al. Fundus image-label pairs synthesis and retinopathy screening via GANs with class-imbalanced semi-supervised learning [J]. IEEE Transactions on Medical Imaging, 2023, 42(9):2714-2725. |
14 | 聂永琦,曹慧,杨锋,等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用,2021,57(20):25-41. |
NIE Y Q, CAO H, YANG F, et al. Review of application of deep learning in detection of diabetic retinal lesions[J]. Computer Engineering and Applications, 2021, 57(20): 25-41. | |
15 | POPLIN R, VARADARAJAN A V, BLUMER K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J]. Nature Biomedical Engineering, 2018, 2(3): 158-164. |
16 | KANG E Y C, HSIEH Y T, LI C H, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation [J]. JMIR Medical Informatics, 2020, 8(11): No.e23472. |
17 | ZHAO L, REN H, ZHANG J, et al. Diabetic retinopathy, classified using the lesion-aware deep learning system, predicts diabetic end-stage renal disease in Chinese patients [J]. Endocrine Practice, 2020, 26(4): 429-443. |
18 | SABANAYAGAM C, XU D, TING D S W, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations [J]. The Lancet Digital Health, 2020, 2(6): e295-e302. |
19 | BETZLER B K, CHEE E Y L, HE F, et al. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes [J]. Journal of the American Medical Informatics Association, 2023, 30(12): 1904-1914. |
20 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. [2024-02-15]. . |
21 | CHEN S, MA K, ZHENG Y. Med 3D: transfer learning for 3D medical image analysis [EB/OL]. [2023-12-19]. . |
22 | CHATTERJEE S, KHUNTI K, DAVIES M J. Type 2 diabetes [J]. The Lancet, 2017, 389(10085): 2239-2251. |
23 | YANG Z, TAN T E, SHAO Y, et al. Classification of diabetic retinopathy: past, present and future [J]. Frontiers in Endocrinology, 2022, 13: 1079217. |
24 | HANEDA M, UTSUNOMIYA K, KOYA D, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy[J]. Clinical and Experimental Nephrology, 2015, 19(1): 1-5. |
25 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-01-09]. . |
26 | CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9260-9269. |
27 | CAO K, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1567-1578. |
28 | SADI A A, CHOWDHURY L, JAHAN N, et al. LMFLOSS: a hybrid loss for imbalanced medical image classification [EB/OL]. [2024-03-01]. . |
29 | LIU Y, ZHANG F, GAO X, et al. Lesion-aware attention network for diabetic nephropathy diagnosis with optical coherence tomography images[J]. Frontiers in Medicine, 2023, 10: No.1259478. |
30 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. |
31 | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: ACM, 2019: 6105-6114. |
[1] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[2] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[3] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[4] | Ruilong CHEN, Tao HU, Youjun BU, Peng YI, Xianjun HU, Wei QIAO. Stacking ensemble adversarial defense method for encrypted malicious traffic detection model [J]. Journal of Computer Applications, 2025, 45(3): 864-871. |
[5] | Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method [J]. Journal of Computer Applications, 2025, 45(3): 823-831. |
[6] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[7] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[8] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[9] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[10] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[11] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[12] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[13] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[14] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[15] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||