Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1300-1309.DOI: 10.11772/j.issn.1001-9081.2024040519
• Multimedia computing and computer simulation • Previous Articles Next Articles
Lihu PAN(), Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO
Received:
2024-04-25
Revised:
2024-09-12
Accepted:
2024-09-14
Online:
2025-04-08
Published:
2025-04-10
Contact:
Lihu PAN
About author:
PENG Shouxin, born in 1998, M. S. candidate. His research interests include deep learning, video anomaly detection.Supported by:
通讯作者:
潘理虎
作者简介:
彭守信(1998—),男,江西九江人,硕士研究生,主要研究方向:深度学习、视频异常检测基金资助:
CLC Number:
Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions[J]. Journal of Computer Applications, 2025, 45(4): 1300-1309.
潘理虎, 彭守信, 张睿, 薛之洋, 毛旭珍. 面向运动前景区域的视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1300-1309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040519
方法 类型 | 方法 | CUHK Avenue | UCSD Ped1 | UCSD Ped2 | ShanghaiTech |
---|---|---|---|---|---|
传统 | 文献[ | — | 59.0 | 69.3 | — |
文献[ | — | 81.8 | 82.9 | — | |
文献[ | 78.3 | — | — | — | |
重构 | Conv-AE[ | 80.0 | 75.0 | 85.0 | 60.9 |
ConvLSTM-AE[ | 77.0 | 75.5 | 88.1 | — | |
sRNN[ | 81.7 | — | 92.2 | 68.0 | |
MemAE[ | 83.3 | — | 94.1 | 71.2 | |
MNAD-Recon[ | 82.8 | — | 90.2 | 69.8 | |
sRNN-AE[ | 83.5 | — | 92.2 | 69.6 | |
预测 | 文献[ | 84.9 | 83.1 | 95.4 | 72.8 |
文献[ | 85.3 | 95.9 | |||
文献[ | — | 95.4 | 74.1 | ||
MAMC[ | 87.6 | — | 96.7 | 71.5 | |
重构+ 预测 | 文献[ | 83.7 | — | 71.5 | |
文献[ | 80.6 | — | 89.4 | 68.9 | |
NUFP-GAN | 87.6 | 85.2 | 96.0 | 73.3 |
Tab. 1 AUC values of different types of methods on different datasets
方法 类型 | 方法 | CUHK Avenue | UCSD Ped1 | UCSD Ped2 | ShanghaiTech |
---|---|---|---|---|---|
传统 | 文献[ | — | 59.0 | 69.3 | — |
文献[ | — | 81.8 | 82.9 | — | |
文献[ | 78.3 | — | — | — | |
重构 | Conv-AE[ | 80.0 | 75.0 | 85.0 | 60.9 |
ConvLSTM-AE[ | 77.0 | 75.5 | 88.1 | — | |
sRNN[ | 81.7 | — | 92.2 | 68.0 | |
MemAE[ | 83.3 | — | 94.1 | 71.2 | |
MNAD-Recon[ | 82.8 | — | 90.2 | 69.8 | |
sRNN-AE[ | 83.5 | — | 92.2 | 69.6 | |
预测 | 文献[ | 84.9 | 83.1 | 95.4 | 72.8 |
文献[ | 85.3 | 95.9 | |||
文献[ | — | 95.4 | 74.1 | ||
MAMC[ | 87.6 | — | 96.7 | 71.5 | |
重构+ 预测 | 文献[ | 83.7 | — | 71.5 | |
文献[ | 80.6 | — | 89.4 | 68.9 | |
NUFP-GAN | 87.6 | 85.2 | 96.0 | 73.3 |
方法 | UCSD Ped1 | UCSD Ped2 | CUHK Avenue |
---|---|---|---|
文献[ | 40.0 | 30.0 | — |
文献[ | 25.0 | 25.0 | — |
Conv-AE[ | 27.9 | 21.7 | 25.1 |
文献[ | — | 22.3 | |
文献[ | 25.2 | 12.5 | |
ST-CaAE[ | 15.3 | 16.7 | 24.4 |
文献[ | — | 20.0 | 23.0 |
NUFP-GAN | 10.2 | 20.3 |
Tab. 2 EER performance comparison and analysis of proposed method and state-of-the-art methods on three public datasets
方法 | UCSD Ped1 | UCSD Ped2 | CUHK Avenue |
---|---|---|---|
文献[ | 40.0 | 30.0 | — |
文献[ | 25.0 | 25.0 | — |
Conv-AE[ | 27.9 | 21.7 | 25.1 |
文献[ | — | 22.3 | |
文献[ | 25.2 | 12.5 | |
ST-CaAE[ | 15.3 | 16.7 | 24.4 |
文献[ | — | 20.0 | 23.0 |
NUFP-GAN | 10.2 | 20.3 |
组合方式 序号 | 基准 模型 | 嵌套U型帧 预测网络 | 自注意力 补丁判别器 | 多尺度 一致性损失 | AUC/% |
---|---|---|---|---|---|
1 | √ | × | × | × | 83.1 |
2 | × | √ | × | × | 84.3 |
3 | × | × | √ | × | 84.1 |
4 | × | × | × | √ | 83.2 |
5 | × | √ | √ | × | 85.0 |
6 | × | × | √ | √ | 84.6 |
7 | × | √ | × | √ | 84.9 |
8 | × | √ | √ | √ | 85.2 |
Tab. 3 Ablation experiments on UCSD Ped1 dataset
组合方式 序号 | 基准 模型 | 嵌套U型帧 预测网络 | 自注意力 补丁判别器 | 多尺度 一致性损失 | AUC/% |
---|---|---|---|---|---|
1 | √ | × | × | × | 83.1 |
2 | × | √ | × | × | 84.3 |
3 | × | × | √ | × | 84.1 |
4 | × | × | × | √ | 83.2 |
5 | × | √ | √ | × | 85.0 |
6 | × | × | √ | √ | 84.6 |
7 | × | √ | × | √ | 84.9 |
8 | × | √ | √ | √ | 85.2 |
1 | BENEZETH Y, JODOIN P M, SALIGRAMA V, et al. Abnormal events detection based on spatio-temporal co-occurences[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2458-2465. |
2 | MAHADEVAN V, LI W, BHALODIA V, et al. Anomaly detection in crowded scenes[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 1975-1981. |
3 | LUO W, LIU W, GAO S. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 341-349. |
4 | MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 935-942. |
5 | HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 733-742. |
6 | SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3379-3388. |
7 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
8 | LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection — a new baseline[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545. |
9 | LI C, LI H, ZHANG G. Future frame prediction based on generative assistant discriminative network for anomaly detection[J]. Applied Intelligence, 2023, 53: 542-559. |
10 | SINGH R, SETHI A, SAINI K, et al. CVAD-GAN: constrained video anomaly detection via generative adversarial network[J]. Image and Vision Computing, 2024, 143: No.104950. |
11 | LI H, CHEN J, HUANG X, et al. FOAD: a novel video anomaly detection focusing on objects[J]. Multimedia Tools and Applications, 2024, 83(7): 20637-20651. |
12 | XU H, LIU W, XING W, et al. Motion-aware future frame prediction for video anomaly detection based on saliency perception[J]. Signal, Image and Video Processing, 2022, 16: 2121-2129. |
13 | QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: No.107404. |
14 | LU C, SHI J, JIA J. Abnormal event detection at 150 FPS in MATLAB[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2720-2727. |
15 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
16 | HU X, LIAN J, ZHANG D, et al. Video anomaly detection based on 3D convolutional auto-encoder[J]. Signal, Image and Video Processing, 2022, 16: 1885-1893. |
17 | WANG L, ZHOU F, LI Z, et al. Abnormal event detection in videos using hybrid spatio-temporal autoencoder[C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 2276-2280. |
18 | SHAO W, RAJAPAKSHA P, WEI Y, et al. COVAD: content-oriented video anomaly detection using a self-attention based deep learning model[J]. Virtual Reality and Intelligent Hardware, 2023, 5(1): 24-41. |
19 | 郑重,杨晓文,谢剑斌,等. 融合混合注意力的自编码器视频异常检测[J]. 计算机工程与设计, 2024, 45(2):516-523. |
ZHENG Z, YANG X W, XIE J B, et al. Autoencoder video anomaly detection based on hybrid attention[J]. Computer Engineering and Design, 2024, 45(2): 516-523. | |
20 | PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369. |
21 | GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714. |
22 | LE V T, KIM Y G. Attention-based residual autoencoder for video anomaly detection[J]. Applied Intelligence, 2023, 53(3): 3240-3254. |
23 | NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1273-1283. |
24 | DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate[J]. Pattern Recognition, 2021, 114: No.107865. |
25 | ZAHEER M Z, MAHMOOD A, KHAN M H, et al. Generative cooperative learning for unsupervised video anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14724-14734. |
26 | AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019: 622-637. |
27 | PERERA P, NALLAPATI R, XIANG B. OCGAN: one-class novelty detection using GANs with constrained latent representations[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2893-2901. |
28 | ACSINTOAE A, FLORESCU A, GEORGESCU M I, et al. Ubnormal: new benchmark for supervised open-set video anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20111-20121. |
29 | LEE S, KIM H G, RO Y M. STAN: spatio-temporal adversarial networks for abnormal event detection[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 1323-1327. |
30 | LIU Y, LIU J, YANG K, et al. AMP-net: appearance-motion prototype network assisted automatic video anomaly detection system[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2843-2855. |
31 | SUN Z, WANG P, ZHENG W, et al. Dual GroupGAN: an unsupervised four-competitor (2V2) approach for video anomaly detection[J]. Pattern Recognition, 2024, 153: No.110500. |
32 | SINGH R, SETHI A, SAINI K, et al. Attention-guided generator with dual discriminator GAN for real-time video anomaly detection[J]. Engineering Applications of Artificial Intelligence, 2024, 131: No.107830. |
33 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1132-1140. |
34 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
35 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. |
36 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
37 | WANG X, CHE Z, JIANG B, et al. Robust unsupervised video anomaly detection by multipath frame prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2301-2312. |
38 | MATHTHIEU M, COUPRIE C, LeCUN Y. Deep multi-scale video prediction beyond mean square error[EB/OL]. (2016-02-26) [2024-03-01].. |
39 | 郭方圆,吉根林. 基于双鉴别器和伪视频生成的视频异常检测方法[J]. 计算机科学, 2024, 51(8): 217-223. |
GUO F Y, JI G L. Video anomaly detection method based on dual discriminators and pseudo video generation[J]. Computer Science, 2024, 51(8): 217-223. | |
40 | KIM J, GRAUAMN K. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2921-2928. |
41 | DEL GIORNO A, BAGNELL J A, HEBERT M. A discriminative framework for anomaly detection in large videos[C]// Proceedings of the 2016 European Conference Computer Vision, LNCS 9909. Cham: Springer, 2016: 334-349. |
42 | LUO W, LIU W, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]// Proceedings of the 2017 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2017: 439-444. |
43 | LUO W, LIU W, LIAN D, et al. Video anomaly detection with sparse coding inspired deep neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 1070-1084. |
44 | LU Y, YU F, REDDY M K K, et al. Few-shot scene-adaptive anomaly detection[C]// Proceedings of the 2020 European Conference Computer Vision, LNCS 12350. Cham: Springer, 2020: 125-141. |
45 | LI Q, YANG R, XIAO F, et al. Attention-based anomaly detection in multi-view surveillance videos[J]. Knowledge-Based Systems, 2022, 252: No.109348. |
46 | NING Z, WANG Z, LIU Y, et al. Memory-enhanced appearance-motion consistency framework for video anomaly detection[J]. Computer Communications, 2024, 216: 159-167. |
47 | CHANG Y, TU Z, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: No.108213. |
48 | TANG Y, ZHAO L, ZHANG S, et al. Integrating prediction and reconstruction for anomaly detection[J]. Pattern Recognition Letters, 2020, 129: 123-130. |
49 | WU P, LIU J, LI M, et al. Fast sparse coding networks for anomaly detection in videos[J]. Pattern Recognition, 2020, 107: No.107515. |
50 | LI N, CHANG F, LIU C. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes[J]. IEEE Transactions on Multimedia, 2021, 23: 203-215. |
[1] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[2] | Junxiu AN, Linwang YANG, Yuan LIU. Unsupervised text style transfer based on semantic perception of proximity [J]. Journal of Computer Applications, 2025, 45(4): 1139-1147. |
[3] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[4] | Ruilong CHEN, Tao HU, Youjun BU, Peng YI, Xianjun HU, Wei QIAO. Stacking ensemble adversarial defense method for encrypted malicious traffic detection model [J]. Journal of Computer Applications, 2025, 45(3): 864-871. |
[5] | Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method [J]. Journal of Computer Applications, 2025, 45(3): 823-831. |
[6] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[7] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
[8] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[9] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[10] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[11] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[12] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[13] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[14] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[15] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||