Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 823-831.DOI: 10.11772/j.issn.1001-9081.2024091398
• Frontier research and typical applications of large models • Previous Articles Next Articles
Zhenhua XUE1, Qiang LI1, Chao HUANG2()
Received:
2024-10-07
Revised:
2024-12-01
Accepted:
2024-12-03
Online:
2025-01-14
Published:
2025-03-10
Contact:
Chao HUANG
About author:
XUE Zhenhua, born in 1983, M. S., economist. His research interests include defect detection, efficient heavy-duty transportation.Supported by:
通讯作者:
黄超
作者简介:
薛振华(1983—),男,山西大同人,经济师,硕士,主要研究方向:缺陷检测、高效重载运输基金资助:
CLC Number:
Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method[J]. Journal of Computer Applications, 2025, 45(3): 823-831.
薛振华, 李强, 黄超. 视觉基础模型驱动的像素级图像异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 823-831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091398
类别 | SFA[ | ACSNet[ | PraNet[ | 文献[ | AutoSAM[ | I-MedSAM[ | 本文方法 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | |
平均 | 0.041 | 0.739 | 0.036 | 0.840 | 0.015 | 0.844 | 0.011 | 0.860 | 0.014 | 0.820 | 0.016 | 0.875 | 0.009 | 0.904 |
药片 | 0.031 | 0.735 | 0.022 | 0.772 | 0.010 | 0.826 | 0.006 | 0.850 | 0.004 | 0.900 | 0.006 | 0.878 | 0.004 | 0.947 |
电缆 | 0.083 | 0.726 | 0.037 | 0.825 | 0.024 | 0.828 | 0.018 | 0.881 | 0.022 | 0.791 | 0.024 | 0.831 | 0.020 | 0.833 |
胶囊 | 0.025 | 0.552 | 0.006 | 0.788 | 0.008 | 0.808 | 0.004 | 0.765 | 0.017 | 0.429 | 0.010 | 0.841 | 0.007 | 0.850 |
瓷砖 | 0.062 | 0.768 | 0.016 | 0.961 | 0.024 | 0.907 | 0.012 | 0.924 | 0.014 | 0.954 | 0.012 | 0.954 | 0.011 | 0.968 |
晶体管 | 0.133 | 0.596 | 0.758 | 0.189 | 0.034 | 0.616 | 0.032 | 0.838 | 0.063 | 0.390 | 0.105 | 0.590 | 0.023 | 0.913 |
地毯 | 0.031 | 0.690 | 0.011 | 0.848 | 0.011 | 0.885 | 0.008 | 0.855 | 0.007 | 0.900 | 0.007 | 0.912 | 0.010 | 0.893 |
木材 | 0.031 | 0.832 | 0.013 | 0.938 | 0.018 | 0.899 | 0.013 | 0.900 | 0.016 | 0.860 | 0.017 | 0.880 | 0.012 | 0.892 |
榛子 | 0.077 | 0.583 | 0.009 | 0.960 | 0.015 | 0.902 | 0.008 | 0.939 | 0.006 | 0.906 | 0.007 | 0.930 | 0.006 | 0.908 |
皮革 | 0.015 | 0.737 | 0.003 | 0.940 | 0.005 | 0.886 | 0.004 | 0.878 | 0.004 | 0.915 | 0.004 | 0.904 | 0.004 | 0.914 |
螺丝 | 0.007 | 0.750 | 0.003 | 0.833 | 0.006 | 0.729 | 0.003 | 0.780 | 0.005 | 0.789 | 0.002 | 0.903 | 0.002 | 0.905 |
金属螺母 | 0.095 | 0.747 | 0.022 | 0.809 | 0.021 | 0.885 | 0.013 | 0.930 | 0.012 | 0.939 | 0.011 | 0.947 | 0.010 | 0.950 |
牙刷 | 0.045 | 0.738 | 0.033 | 0.786 | 0.042 | 0.692 | 0.027 | 0.729 | 0.007 | 0.806 | 0.007 | 0.839 | 0.003 | 0.876 |
拉链 | 0.009 | 0.941 | 0.008 | 0.923 | 0.011 | 0.930 | 0.009 | 0.920 | 0.008 | 0.918 | 0.007 | 0.930 | 0.007 | 0.914 |
瓶子 | 0.037 | 0.883 | 0.029 | 0.898 | 0.037 | 0.850 | 0.017 | 0.940 | 0.018 | 0.948 | 0.019 | 0.947 | 0.017 | 0.936 |
网格 | 0.023 | 0.718 | 0.009 | 0.775 | 0.011 | 0.818 | 0.010 | 0.806 | 0.007 | 0.859 | 0.006 | 0.842 | 0.005 | 0.865 |
Tab. 1 Quantitative results comparison of different methods on MVTec AD dataset
类别 | SFA[ | ACSNet[ | PraNet[ | 文献[ | AutoSAM[ | I-MedSAM[ | 本文方法 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | MAE | mE | |
平均 | 0.041 | 0.739 | 0.036 | 0.840 | 0.015 | 0.844 | 0.011 | 0.860 | 0.014 | 0.820 | 0.016 | 0.875 | 0.009 | 0.904 |
药片 | 0.031 | 0.735 | 0.022 | 0.772 | 0.010 | 0.826 | 0.006 | 0.850 | 0.004 | 0.900 | 0.006 | 0.878 | 0.004 | 0.947 |
电缆 | 0.083 | 0.726 | 0.037 | 0.825 | 0.024 | 0.828 | 0.018 | 0.881 | 0.022 | 0.791 | 0.024 | 0.831 | 0.020 | 0.833 |
胶囊 | 0.025 | 0.552 | 0.006 | 0.788 | 0.008 | 0.808 | 0.004 | 0.765 | 0.017 | 0.429 | 0.010 | 0.841 | 0.007 | 0.850 |
瓷砖 | 0.062 | 0.768 | 0.016 | 0.961 | 0.024 | 0.907 | 0.012 | 0.924 | 0.014 | 0.954 | 0.012 | 0.954 | 0.011 | 0.968 |
晶体管 | 0.133 | 0.596 | 0.758 | 0.189 | 0.034 | 0.616 | 0.032 | 0.838 | 0.063 | 0.390 | 0.105 | 0.590 | 0.023 | 0.913 |
地毯 | 0.031 | 0.690 | 0.011 | 0.848 | 0.011 | 0.885 | 0.008 | 0.855 | 0.007 | 0.900 | 0.007 | 0.912 | 0.010 | 0.893 |
木材 | 0.031 | 0.832 | 0.013 | 0.938 | 0.018 | 0.899 | 0.013 | 0.900 | 0.016 | 0.860 | 0.017 | 0.880 | 0.012 | 0.892 |
榛子 | 0.077 | 0.583 | 0.009 | 0.960 | 0.015 | 0.902 | 0.008 | 0.939 | 0.006 | 0.906 | 0.007 | 0.930 | 0.006 | 0.908 |
皮革 | 0.015 | 0.737 | 0.003 | 0.940 | 0.005 | 0.886 | 0.004 | 0.878 | 0.004 | 0.915 | 0.004 | 0.904 | 0.004 | 0.914 |
螺丝 | 0.007 | 0.750 | 0.003 | 0.833 | 0.006 | 0.729 | 0.003 | 0.780 | 0.005 | 0.789 | 0.002 | 0.903 | 0.002 | 0.905 |
金属螺母 | 0.095 | 0.747 | 0.022 | 0.809 | 0.021 | 0.885 | 0.013 | 0.930 | 0.012 | 0.939 | 0.011 | 0.947 | 0.010 | 0.950 |
牙刷 | 0.045 | 0.738 | 0.033 | 0.786 | 0.042 | 0.692 | 0.027 | 0.729 | 0.007 | 0.806 | 0.007 | 0.839 | 0.003 | 0.876 |
拉链 | 0.009 | 0.941 | 0.008 | 0.923 | 0.011 | 0.930 | 0.009 | 0.920 | 0.008 | 0.918 | 0.007 | 0.930 | 0.007 | 0.914 |
瓶子 | 0.037 | 0.883 | 0.029 | 0.898 | 0.037 | 0.850 | 0.017 | 0.940 | 0.018 | 0.948 | 0.019 | 0.947 | 0.017 | 0.936 |
网格 | 0.023 | 0.718 | 0.009 | 0.775 | 0.011 | 0.818 | 0.010 | 0.806 | 0.007 | 0.859 | 0.006 | 0.842 | 0.005 | 0.865 |
方法 | Kvasir33 | Clinic | Colon | ETIS | ||||
---|---|---|---|---|---|---|---|---|
Dice | IoU | Dice | IoU | Dice | IoU | Dice | IoU | |
U-Net | 81.80 | 74.60 | 82.30 | 75.50 | 51.20 | 44.40 | 39.80 | 33.50 |
U-Net++ | 82.10 | 74.30 | 79.40 | 72.90 | 48.30 | 41.00 | 40.10 | 34.40 |
SFA | 72.30 | 61.10 | 70.00 | 60.70 | 46.90 | 34.70 | 29.70 | 21.70 |
MSEG | 89.70 | 83.90 | 90.90 | 86.40 | 73.50 | 66.60 | 70.00 | 63.00 |
DCRNet | 88.60 | 82.50 | 89.60 | 84.40 | 70.40 | 63.10 | 55.60 | 49.60 |
ACSNet | 89.80 | 83.80 | 88.20 | 82.60 | 71.60 | 64.90 | 57.80 | 50.90 |
PraNet | 89.80 | 84.00 | 89.90 | 84.90 | 71.20 | 64.00 | 62.80 | 56.70 |
EU-Net | 90.80 | 85.40 | 90.20 | 84.60 | 75.60 | 68.10 | 68.70 | 60.90 |
SANet | 90.40 | 84.70 | 91.60 | 85.90 | 75.30 | 67.00 | 75.00 | 65.40 |
COMMA | 90.40 | 86.00 | 91.60 | 87.10 | 75.40 | 71.10 | 64.80 | |
SAM-EG | 93.10 | 87.90 | ||||||
本文方法 | 92.10 | 87.60 | 79.30 | 71.30 | 78.60 | 71.50 |
Tab. 2 Quantitative results comparison of different methods on Kvasir33, Clinic, Colon, and ETIS datasets
方法 | Kvasir33 | Clinic | Colon | ETIS | ||||
---|---|---|---|---|---|---|---|---|
Dice | IoU | Dice | IoU | Dice | IoU | Dice | IoU | |
U-Net | 81.80 | 74.60 | 82.30 | 75.50 | 51.20 | 44.40 | 39.80 | 33.50 |
U-Net++ | 82.10 | 74.30 | 79.40 | 72.90 | 48.30 | 41.00 | 40.10 | 34.40 |
SFA | 72.30 | 61.10 | 70.00 | 60.70 | 46.90 | 34.70 | 29.70 | 21.70 |
MSEG | 89.70 | 83.90 | 90.90 | 86.40 | 73.50 | 66.60 | 70.00 | 63.00 |
DCRNet | 88.60 | 82.50 | 89.60 | 84.40 | 70.40 | 63.10 | 55.60 | 49.60 |
ACSNet | 89.80 | 83.80 | 88.20 | 82.60 | 71.60 | 64.90 | 57.80 | 50.90 |
PraNet | 89.80 | 84.00 | 89.90 | 84.90 | 71.20 | 64.00 | 62.80 | 56.70 |
EU-Net | 90.80 | 85.40 | 90.20 | 84.60 | 75.60 | 68.10 | 68.70 | 60.90 |
SANet | 90.40 | 84.70 | 91.60 | 85.90 | 75.30 | 67.00 | 75.00 | 65.40 |
COMMA | 90.40 | 86.00 | 91.60 | 87.10 | 75.40 | 71.10 | 64.80 | |
SAM-EG | 93.10 | 87.90 | ||||||
本文方法 | 92.10 | 87.60 | 79.30 | 71.30 | 78.60 | 71.50 |
方法 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
FCN | 28.84 | 28.71 | — | — |
U-Net | 79.43 | 65.99 | 75.12 | 75.12 |
U-Net++ | 79.49 | 66.04 | 79.03 | 79.03 |
Axial Attention | 76.83 | 62.49 | — | — |
MedT | 79.55 | 66.17 | 88.85 | 78.93 |
PraNet | 79.62 | 66.14 | 89.69 | 82.19 |
UCTransNet | 79.87 | 66.68 | 89.84 | 82.24 |
文献[ | 80.13 | 67.09 | 91.19 | 84.34 |
Med-SA | 80.34 | 67.33 | ||
LViT | 80.15 | 67.00 | 90.02 | 82.68 |
文献[ | 91.08 | 84.00 | ||
本文方法 | 84.02 | 72.52 | 92.74 | 87.01 |
Tab. 3 Quantitative results comparison of different methods on MoNuSeg and GlaS datasets
方法 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
FCN | 28.84 | 28.71 | — | — |
U-Net | 79.43 | 65.99 | 75.12 | 75.12 |
U-Net++ | 79.49 | 66.04 | 79.03 | 79.03 |
Axial Attention | 76.83 | 62.49 | — | — |
MedT | 79.55 | 66.17 | 88.85 | 78.93 |
PraNet | 79.62 | 66.14 | 89.69 | 82.19 |
UCTransNet | 79.87 | 66.68 | 89.84 | 82.24 |
文献[ | 80.13 | 67.09 | 91.19 | 84.34 |
Med-SA | 80.34 | 67.33 | ||
LViT | 80.15 | 67.00 | 90.02 | 82.68 |
文献[ | 91.08 | 84.00 | ||
本文方法 | 84.02 | 72.52 | 92.74 | 87.01 |
SAM | OD-SSM | OD Conv | MoNuSeg | GlaS | ||
---|---|---|---|---|---|---|
Dice | IoU | Dice | IoU | |||
√ | 82.43 | 70.17 | 92.10 | 86.02 | ||
√ | √ | 82.99 | 71.01 | 92.58 | 86.62 | |
√ | √ | 83.36 | 71.59 | 92.60 | 86.81 | |
√ | √ | √ | 84.02 | 72.52 | 92.74 | 87.01 |
Tab. 4 Ablation experiment results
SAM | OD-SSM | OD Conv | MoNuSeg | GlaS | ||
---|---|---|---|---|---|---|
Dice | IoU | Dice | IoU | |||
√ | 82.43 | 70.17 | 92.10 | 86.02 | ||
√ | √ | 82.99 | 71.01 | 92.58 | 86.62 | |
√ | √ | 83.36 | 71.59 | 92.60 | 86.81 | |
√ | √ | √ | 84.02 | 72.52 | 92.74 | 87.01 |
OD Conv数 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice/% | IoU/% | Dice/% | IoU/% | |
1 | 83.63 | 71.97 | 92.37 | 86.38 |
2 | 84.02 | 72.52 | 92.74 | 87.01 |
3 | 82.52 | 70.32 | 92.63 | 86.93 |
Tab. 5 Influence of OD Conv number on model performance
OD Conv数 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice/% | IoU/% | Dice/% | IoU/% | |
1 | 83.63 | 71.97 | 92.37 | 86.38 |
2 | 84.02 | 72.52 | 92.74 | 87.01 |
3 | 82.52 | 70.32 | 92.63 | 86.93 |
OD-SSM数 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice/% | IoU/% | Dice/% | IoU/% | |
1 | 84.02 | 72.52 | 92.74 | 87.01 |
2 | 83.21 | 71.35 | 92.61 | 86.77 |
3 | 83.14 | 71.22 | 92.53 | 86.66 |
Tab. 6 Influence of OD-SSM number on model performance
OD-SSM数 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice/% | IoU/% | Dice/% | IoU/% | |
1 | 84.02 | 72.52 | 92.74 | 87.01 |
2 | 83.21 | 71.35 | 92.61 | 86.77 |
3 | 83.14 | 71.22 | 92.53 | 86.66 |
卷积机制 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
DW Conv | 84.02 | 72.52 | 92.74 | 87.01 |
Conv | 83.78 | 72.00 | 92.56 | 86.69 |
Tab. 7 Influence of different Conv mechanisms on model performance
卷积机制 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
DW Conv | 84.02 | 72.52 | 92.74 | 87.01 |
Conv | 83.78 | 72.00 | 92.56 | 86.69 |
卷积机制 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
OD Conv | 84.02 | 72.52 | 92.74 | 87.01 |
Conv | 82.76 | 70.69 | 92.16 | 86.09 |
Tab. 8 Influence of OD Conv and standard convolution on model performance
卷积机制 | MoNuSeg | GlaS | ||
---|---|---|---|---|
Dice | IoU | Dice | IoU | |
OD Conv | 84.02 | 72.52 | 92.74 | 87.01 |
Conv | 82.76 | 70.69 | 92.16 | 86.09 |
方法 | 计算量/GFLOPs | 参数量/106 |
---|---|---|
AutoSAM | 80.314 | 88.569 |
I-MedSAM | 648.060 | 92.520 |
本文方法 | 53.902 | 53.687 |
Tab. 9 Time and space complexity comparison of different methods
方法 | 计算量/GFLOPs | 参数量/106 |
---|---|---|
AutoSAM | 80.314 | 88.569 |
I-MedSAM | 648.060 | 92.520 |
本文方法 | 53.902 | 53.687 |
1 | HUANG C, WEN J, XU Y, et al. Self-supervised attentive generative adversarial networks for video anomaly detection [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9389-9403. |
2 | KIM T, LEE H, KIM D. UACANet: uncertainty augmented context attention for polyp segmentation [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2167-2175. |
3 | HUANG C, LIU C, ZHANG Z, et al. Pixel-level anomaly detection via uncertainty-aware prototypical Transformer [C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 521-530. |
4 | MAMONOV A V, FIGUEIREDO I N, FIGUEIREDO P N, et al. Automated polyp detection in colon capsule endoscopy [J]. IEEE Transactions on Medical Imaging, 2014, 33(7): 1488-1502. |
5 | TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. |
6 | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything [C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3992-4003. |
7 | LI J, CHEN T, WANG X, et al. Adapting the segment anything model for multi-modal retinal anomaly detection and localization[J]. Information Fusion, 2025, 113: No.102631. |
8 | LIU J, WU K, NIE Q, et al. Unsupervised continual anomaly detection with contrastively-learned prompt [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 3639-3647. |
9 | CAI W, HUANG W, TIAN L, et al. Multiscale global attention for abnormal geological hazard segmentation [J]. IEEE Sensors Journal, 2024, 24(10): 16961-16971. |
10 | XIE B, TANG H, DUAN B, et al. MaskSAM: towards auto-prompt SAM with mask classification for medical image segmentation [EB/OL]. [2024-05-14]. . |
11 | SHAHARABANY T, DAHAN A, GIRYES R, et al. AutoSAM: adapting SAM to medical images by overloading the prompt encoder[C]// Proceedings of the 2023 British Machine Vision Conference. Durham: BMVA Press, 2023: No.530. |
12 | BAE S H, YOON K J. Polyp detection via imbalanced learning and discriminative feature learning [J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2379-2393. |
13 | REISS T, COHEN N, BERGMAN L, et al. PANDA: adapting pretrained features for anomaly detection and segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2805-2813. |
14 | CHEN Z, LI J, LUO Y, et al. CANZSL: cycle-consistent adversarial networks for zero-shot learning from natural language [C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 863-872. |
15 | CHEN Z, LUO Y, QIU R, et al. Semantics disentangling for generalized zero-shot learning [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8692-8700. |
16 | LIU A A, TIAN H, XU N, et al. Toward region-aware attention learning for scene graph generation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7655-7666. |
17 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
18 | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation [C]// Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and 8th International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
19 | FANG Y, CHEN C, YUAN Y, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[C]// Proceedings of the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11764. Cham: Springer, 2019: 302-310. |
20 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-08-10]. . |
21 | WEI X, CAO J, JIN Y, et al. I-MedSAM: implicit medical image segmentation with segment anything [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15068. Cham: Springer, 2025: 90-107. |
22 | XIE Z, GUAN B, JIANG W, et al. PA-SAM: prompt adapter SAM for high-quality image segmentation[EB/OL]. [2024-08-19]. . |
23 | GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces [EB/OL]. [2024-04-03]. . |
24 | ZHAO S, CHEN H, ZHANG X, et al. RS-Mamba for large remote sensing image dense prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5633314. |
25 | LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL]. [2024-09-23]. . |
26 | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191. |
27 | KUMAR N, VERMA R, SHARMA S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology [J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1550-1560. |
28 | SIRINUKUNWATTANA K, PLUIM J P W, CHEN H, et al. Gland segmentation in colon histology images: the GlaS challenge contest [J]. Medical Image Analysis, 2017, 35: 489-502. |
29 | JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset [C]// Proceedings of the 2020 International Conference on MultiMedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462. |
30 | BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians [J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. |
31 | SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer [J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 283-293. |
32 | FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation [C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2020: 263-273. |
33 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-08-10]. . |
34 | 范登平,季葛鹏,秦雪彬,等. 认知规律启发的物体分割评价标准及损失函数[J]. 中国科学:信息科学, 2021, 51(9):1475-1489. |
FAN D P, JI G P, QIN X B, et al. Cognitive vision inspired object segmentation metric and loss function [J]. SCIENTIA SINICA Informationis, 2021, 51(9): 1475-1489. | |
35 | LI Z, LI Y, LI Q, et al. LViT: language meets vision Transformer in medical image segmentation [J]. IEEE Transactions on Medical Imaging, 2024, 43(1): 96-107. |
36 | ZHANG R, LI G, LI Z, et al. Adaptive context selection for polyp segmentation [C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12266. Cham: Springer, 2020: 253-262. |
37 | TRINH Q H, NGUYEN H D, NGOC B T N, et al. SAM-EG: segment anything model with edge guidance framework for efficient polyp segmentation [C]// Proceedings of the 2024 British Machine Vision Conference. Durham: BMVA Press, 2024: No.472. |
38 | HUANG C H, WU H Y, LIN Y L. HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean Dice and 86 FPS [EB/OL]. [2024-03-04]. . |
39 | YIN Z, LIANG K, MA Z, et al. Duplex contextual relation network for polyp segmentation [C]// Proceedings of the IEEE 19th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2022: 1-5. |
40 | PATEL K, BUR A M, WANG G. Enhanced U-Net: a feature enhancement network for polyp segmentation [C]// Proceedings of the 18th Conference on Robots and Vision. Piscataway: IEEE, 2021: 181-188. |
41 | WEI J, HU Y, ZHANG R, et al. Shallow attention network for polyp segmentation [C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 699-708. |
42 | SHIN W, LEE M S, HAN S W. COMMA: propagating complementary multi-level aggregation network for polyp segmentation [J]. Applied Sciences, 2022, 12(4): No.2114. |
43 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
44 | WANG H, ZHU Y, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 108-126. |
45 | VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical Transformer: gated axial-attention for medical image segmentation [C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 36-46. |
46 | WANG H, CAO P, WANG J, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with Transformer [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 2441-2449. |
47 | SHAHARABANY T, WOLF L. End-to-end segmentation of medical images via patch-wise polygons prediction [C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13435. Cham: Springer, 2022: 308-318. |
48 | WU J, JI W, LIU Y, et al. Medical SAM Adapter: adapting segment anything model for medical image segmentation [EB/OL]. [2024-09-03]. . |
49 | HUANG C, CAI W, JIANG Q, et al. Multimodal representation distribution learning for medical image segmentation [C]// Proceedings of the 33rd International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2024: 4156-4164. |
[1] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[2] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[3] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[4] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[5] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[6] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[7] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[8] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[9] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[10] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[11] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[12] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[13] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[14] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[15] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||