Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3639-3646.DOI: 10.11772/j.issn.1001-9081.2023101379
• Frontier and comprehensive applications • Previous Articles
Received:2023-10-13
															
							
																	Revised:2024-01-16
															
							
																	Accepted:2024-01-18
															
							
							
																	Online:2024-11-13
															
							
																	Published:2024-11-10
															
							
						Contact:
								Hui YANG   
													About author:LIANG Ruiyan, born in 1998, M. S. candidate. His research interests include pose estimation, graph convolutional network.				
													Supported by:通讯作者:
					杨慧
							作者简介:梁睿衍(1998—),男,广东佛山人,硕士研究生,主要研究方向:姿态估计、图卷积网络
				
							基金资助:CLC Number:
Ruiyan LIANG, Hui YANG. Lightweight fall detection algorithm framework based on RPEpose and XJ-GCN[J]. Journal of Computer Applications, 2024, 44(11): 3639-3646.
梁睿衍, 杨慧. 基于RPEpose和XJ-GCN的轻量级跌倒检测算法框架[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3639-3646.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101379
| 位置编码 | AP | AR | 
|---|---|---|
| 2D Sine Position Embedding | 71.7 | 77.1 | 
| Bias Mode | 72.9 | 77.4 | 
| Contextual Mode | 73.3 | 77.6 | 
| RPE-I(本文) | 74.3 | 78.2 | 
Tab. 1 Comparison of different position embeddings
| 位置编码 | AP | AR | 
|---|---|---|
| 2D Sine Position Embedding | 71.7 | 77.1 | 
| Bias Mode | 72.9 | 77.4 | 
| Contextual Mode | 73.3 | 77.6 | 
| RPE-I(本文) | 74.3 | 78.2 | 
| 模型 | 分辨率 | 计算量/GFLOPs | AP/% | AR/% | 
|---|---|---|---|---|
| TransPose-H-A4[ | 256×192 | 10.2 | 74.2 | 78.0 | 
| CPN+[ | 384×288 | 29.2 | 73.0 | 79.0 | 
| AlphaPose[ | 320×256 | 26.7 | 72.3 | — | 
| Simple Baseline[ | 384×288 | 35.6 | 72.3 | 79.0 | 
| OpenPose[ | — | — | 65.3 | — | 
| YOLO-Pose[ | 960×960 | — | 68.5 | 75.0 | 
| OpenPifPaf[ | — | — | 71.9 | — | 
| RPEpose | 256×192 | 8.2 | 74.3 | 78.2 | 
Tab. 2 Performance comparison of different joint keypoint detection models
| 模型 | 分辨率 | 计算量/GFLOPs | AP/% | AR/% | 
|---|---|---|---|---|
| TransPose-H-A4[ | 256×192 | 10.2 | 74.2 | 78.0 | 
| CPN+[ | 384×288 | 29.2 | 73.0 | 79.0 | 
| AlphaPose[ | 320×256 | 26.7 | 72.3 | — | 
| Simple Baseline[ | 384×288 | 35.6 | 72.3 | 79.0 | 
| OpenPose[ | — | — | 65.3 | — | 
| YOLO-Pose[ | 960×960 | — | 68.5 | 75.0 | 
| OpenPifPaf[ | — | — | 71.9 | — | 
| RPEpose | 256×192 | 8.2 | 74.3 | 78.2 | 
| 维度 | Top-1 Accuracy/% | |
|---|---|---|
| X-Sub | X-View | |
| 2D | 88.4 | 95.2 | 
| 3D | 89.6 | 94.6 | 
Tab. 3 Top-1 Accuracy comparison of XJ-GCN on different dimensional datasets
| 维度 | Top-1 Accuracy/% | |
|---|---|---|
| X-Sub | X-View | |
| 2D | 88.4 | 95.2 | 
| 3D | 89.6 | 94.6 | 
| 模型 | 参数量/MB | Top-1 Accuracy/% | |
|---|---|---|---|
| X-Sub | X-View | ||
| S-TR[ | 3.1 | 86.8 | 93.8 | 
| HCN[ | 1.1 | 86.5 | 91.1 | 
| ST-GCN[ | 3.1 | 81.5 | 88.3 | 
| 2s-AGCN[ | 7.1 | 88.5 | 95.1 | 
| AS-GCN[ | 7.6 | 86.8 | 94.2 | 
| SR-TSL[ | 19.2 | 84.8 | 92.4 | 
| AGC-LSTM[ | 23.4 | 87.5 | 93.5 | 
| VA-CNN[ | 24.1 | 88.7 | 94.3 | 
| CoST-GCN[ | 3.1 | 86.0 | 93.4 | 
| XJ-GCN | 1.4 | 89.6 | 94.6 | 
Tab. 4 Performance comparison of different models on NTU RGB+D dataset
| 模型 | 参数量/MB | Top-1 Accuracy/% | |
|---|---|---|---|
| X-Sub | X-View | ||
| S-TR[ | 3.1 | 86.8 | 93.8 | 
| HCN[ | 1.1 | 86.5 | 91.1 | 
| ST-GCN[ | 3.1 | 81.5 | 88.3 | 
| 2s-AGCN[ | 7.1 | 88.5 | 95.1 | 
| AS-GCN[ | 7.6 | 86.8 | 94.2 | 
| SR-TSL[ | 19.2 | 84.8 | 92.4 | 
| AGC-LSTM[ | 23.4 | 87.5 | 93.5 | 
| VA-CNN[ | 24.1 | 88.7 | 94.3 | 
| CoST-GCN[ | 3.1 | 86.0 | 93.4 | 
| XJ-GCN | 1.4 | 89.6 | 94.6 | 
| 跌倒检测算法框架 | 准确率 | 
|---|---|
| OpenPose+CoST-GCN | 85.1 | 
| OpenPose+XJ-GCN | 85.9 | 
| OpenPifPaf+CoST-GCN | 85.8 | 
| OpenPifPaf+XJ-GCN | 86.3 | 
| RPEpose+CoST-GCN | 86.4 | 
| RPEpose+XJ-GCN | 87.2 | 
Tab. 5 Accuracy comparison of different fall detection algorithm frameworks
| 跌倒检测算法框架 | 准确率 | 
|---|---|
| OpenPose+CoST-GCN | 85.1 | 
| OpenPose+XJ-GCN | 85.9 | 
| OpenPifPaf+CoST-GCN | 85.8 | 
| OpenPifPaf+XJ-GCN | 86.3 | 
| RPEpose+CoST-GCN | 86.4 | 
| RPEpose+XJ-GCN | 87.2 | 
| 1 | PIERLEONI P, BELLI A, PALMA L, et al. A high reliability wearable device for elderly fall detection [J]. IEEE Sensors Journal, 2015, 15(8): 4544-4553. | 
| 2 | CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186. | 
| 3 | MAJI D, NAGORI S, MATHEW M, et al. YOLO-Pose: enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2636-2645. | 
| 4 | CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112. | 
| 5 | YANG S, QUAN Z, NIE M, et al. TransPose: keypoint localization via Transformer[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11782-11792. | 
| 6 | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 68-80. | 
| 7 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2023-10-11]. . | 
| 8 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. | 
| 9 | YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 7444-7452. | 
| 10 | LI M, CHEN S, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3590-3598. | 
| 11 | HEDEGAARD L, HEIDARI N, IOSIFIDIS A. Continual spatio-temporal graph convolutional networks[J]. Pattern Recognition, 2023, 140: 109528. | 
| 12 | SHAHROUDY A, LIU J, T-T NG, et al. NTU RGB+ D: a large scale dataset for 3D human activity analysis[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1010-1019. | 
| 13 | XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision Transformer baselines for human pose estimation[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2022: 38571-38584. | 
| 14 | YUAN Y, FU R, HUANG L, et al. HRFormer: high-resolution vision Transformer for dense predict[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 7281-7293. | 
| 15 | 曹建荣,吕俊杰,武欣莹,等.融合运动特征和深度学习的跌倒检测算法[J].计算机应用,2021,41(2):583-589. | 
| CAO J R, LYU J J, WU X Y, et al. Fall detection algorithm integrating motion features and deep learning[J]. Journal of Computer Applications, 2021, 41(2): 583-589. | |
| 16 | 马敬奇,雷欢,陈敏翼.基于AlphaPose优化模型的老人跌倒行为检测算法[J].计算机应用,2022,42(1):294-301. | 
| MA J Q, LEI H, CHEN M Y. Fall behavior detection algorithm for the elderly based on AlphaPose optimization model[J]. Journal of Computer Applications, 2022, 42(1):294-301. | |
| 17 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. | 
| 18 | WU K, PENG H, CHEN M, et al. Rethinking and improving relative position encoding for vision Transformer[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10033-10041. | 
| 19 | FANG H-S, XIE S, TAI Y-W, et al. RMPE: regional multi-person pose estimation[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2353-2362. | 
| 20 | XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]// Proceedings of the 15th European Conference on Computer Vision.Cham: Springer, 2018: 472-487. | 
| 21 | KREISS S, BERTONI L, ALAHI A. OpenPifPaf: composite fields for semantic keypoint detection and spatio-temporal association[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 13498-13511. | 
| 22 | PLIZZARI C, CANNICI M, MATTEUCCI M. Skeleton-based action recognition via spatial and temporal Transformer networks[J]. Computer Vision and Image Understanding, 2021, 208/209: 103219. | 
| 23 | LI C, ZHONG Q, XIE D, et al. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation [EB/OL]. [2023-08-22]. . | 
| 24 | SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12018-12027. | 
| 25 | SI C, JING Y, WANG W, et al. Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 106-121. | 
| 26 | SI C, CHEN W, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1227-1236. | 
| 27 | ZHANG P, LAN C, XING J, et al. View adaptive neural networks for high performance skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963-1978. | 
| [1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| [11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [15] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
