Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2351-2360.DOI: 10.11772/j.issn.1001-9081.2024070985
• Multimedia computing and computer simulation • Previous Articles Next Articles
Pingping YU1, Yuting YAN1, Xinliang TANG1(), He SU2, Jianchao WANG1
Received:
2024-07-15
Revised:
2024-10-11
Accepted:
2024-10-11
Online:
2025-07-10
Published:
2025-07-10
Contact:
Xinliang TANG
About author:
YU Pingping, born in 1984, Ph. D., associate professor. Her research interests include computer vision, artificial intelligence.Supported by:
通讯作者:
唐心亮
作者简介:
于平平(1984—),女,河北石家庄人,副教授,博士,主要研究方向:计算机视觉、人工智能基金资助:
CLC Number:
Pingping YU, Yuting YAN, Xinliang TANG, He SU, Jianchao WANG. Multi-object tracking algorithm for construction machinery in transmission line scenarios[J]. Journal of Computer Applications, 2025, 45(7): 2351-2360.
于平平, 闫玉婷, 唐心亮, 苏鹤, 王建超. 输电线路场景下的施工机械多目标跟踪算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2351-2360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070985
参数 | 数值 |
---|---|
epochs | 300 |
batch size | 16 |
image size | 640 |
optimizer | SGD |
momentum | 0.937 |
weight-decay | 0.000 5 |
Tab. 1 Experimental parameter setting
参数 | 数值 |
---|---|
epochs | 300 |
batch size | 16 |
image size | 640 |
optimizer | SGD |
momentum | 0.937 |
weight-decay | 0.000 5 |
空洞率参数组合 | mAP/%↑ | 浮点运算量/GFLOPs↓ |
---|---|---|
r1=1, r2=3, r3=3, r4=5 | 95.7 | 16.4 |
r1=3, r2=3, r3=3, r4=5 | 95.5 | 16.5 |
r1=3, r2=5, r3=5, r4=7 | 95.3 | 16.5 |
Tab. 2 Ablation experiment results of dilation rate parameters
空洞率参数组合 | mAP/%↑ | 浮点运算量/GFLOPs↓ |
---|---|---|
r1=1, r2=3, r3=3, r4=5 | 95.7 | 16.4 |
r1=3, r2=3, r3=3, r4=5 | 95.5 | 16.5 |
r1=3, r2=5, r3=5, r4=7 | 95.3 | 16.5 |
实验 | SGC3 | R-Triplet | MRB | mAP/%↑ | 模型大小/MB↓ | 浮点运算量/GFLOPs↓ | 参数量/106↓ | 帧率/(frame·s-1)↑ |
---|---|---|---|---|---|---|---|---|
实验1 | ― | ― | ― | 93.6 | 13.7 | 16.0 | 7.03 | 51.2 |
实验2 | √ | ― | ― | 94.8 | 11.6 | 12.6 | 5.89 | 65.3 |
实验3 | ― | √ | ― | 94.2 | 13.8 | 16.0 | 7.10 | 50.8 |
实验4 | ― | ― | √ | 94.4 | 13.8 | 16.2 | 7.11 | 49.1 |
实验5 | √ | √ | ― | 96.3 | 12.0 | 12.6 | 5.89 | 63.0 |
实验6 | √ | √ | √ | 97.4 | 10.1 | 14.2 | 6.75 | 60.5 |
Tab. 3 Overall ablation experiment results
实验 | SGC3 | R-Triplet | MRB | mAP/%↑ | 模型大小/MB↓ | 浮点运算量/GFLOPs↓ | 参数量/106↓ | 帧率/(frame·s-1)↑ |
---|---|---|---|---|---|---|---|---|
实验1 | ― | ― | ― | 93.6 | 13.7 | 16.0 | 7.03 | 51.2 |
实验2 | √ | ― | ― | 94.8 | 11.6 | 12.6 | 5.89 | 65.3 |
实验3 | ― | √ | ― | 94.2 | 13.8 | 16.0 | 7.10 | 50.8 |
实验4 | ― | ― | √ | 94.4 | 13.8 | 16.2 | 7.11 | 49.1 |
实验5 | √ | √ | ― | 96.3 | 12.0 | 12.6 | 5.89 | 63.0 |
实验6 | √ | √ | √ | 97.4 | 10.1 | 14.2 | 6.75 | 60.5 |
算法 | mAP/%↑ | 相较于YOLOv5s变化/百分点 |
---|---|---|
YOLOv5s | 93.6 | ― |
YOLOv5s+ECA | 94.0 | 0.4 |
YOLOv5s+Biformer | 93.7 | 0.1 |
YOLOv5s+R-Triplet | 94.2 | 0.6 |
Tab. 4 Comparison experiment results of R-Triplet module
算法 | mAP/%↑ | 相较于YOLOv5s变化/百分点 |
---|---|---|
YOLOv5s | 93.6 | ― |
YOLOv5s+ECA | 94.0 | 0.4 |
YOLOv5s+Biformer | 93.7 | 0.1 |
YOLOv5s+R-Triplet | 94.2 | 0.6 |
算法 | mAP/%↑ | 相较于YOLOv5s变化/百分点 |
---|---|---|
YOLOv5s | 93.6 | ― |
YOLOv5s+ASPP[ | 94.9 | 1.3 |
YOLOv5s+Scale-Aware RFE Model[ | 95.5 | 1.9 |
YOLOv5s+MRB | 95.7 | 2.1 |
Tab. 5 Comparison experiment results of MRB module
算法 | mAP/%↑ | 相较于YOLOv5s变化/百分点 |
---|---|---|
YOLOv5s | 93.6 | ― |
YOLOv5s+ASPP[ | 94.9 | 1.3 |
YOLOv5s+Scale-Aware RFE Model[ | 95.5 | 1.9 |
YOLOv5s+MRB | 95.7 | 2.1 |
算法 | mAP/%↑ | 参数量/106↓ | 浮点运算量/GFLOPs↓ | 模型大小/MB↓ |
---|---|---|---|---|
YOLOv3 | 92.8 | 61.54 | 155.3 | 117.8 |
YOLOv3-tiny | 79.1 | 8.68 | 13.0 | 16.6 |
YOLOv5s | 93.6 | 7.03 | 16.0 | 13.7 |
YOLOv7 | 94.4 | 37.21 | 105.2 | 71.3 |
YOLOX-s | 96.5 | 8.92 | 26.5 | 18.1 |
YOLOv8s | 96.2 | 11.13 | 28.4 | 22.5 |
CRM-YOLOv5s | 97.4 | 6.75 | 14.2 | 10.1 |
Tab. 6 Comparison experiment results of mainstream detection algorithms
算法 | mAP/%↑ | 参数量/106↓ | 浮点运算量/GFLOPs↓ | 模型大小/MB↓ |
---|---|---|---|---|
YOLOv3 | 92.8 | 61.54 | 155.3 | 117.8 |
YOLOv3-tiny | 79.1 | 8.68 | 13.0 | 16.6 |
YOLOv5s | 93.6 | 7.03 | 16.0 | 13.7 |
YOLOv7 | 94.4 | 37.21 | 105.2 | 71.3 |
YOLOX-s | 96.5 | 8.92 | 26.5 | 18.1 |
YOLOv8s | 96.2 | 11.13 | 28.4 | 22.5 |
CRM-YOLOv5s | 97.4 | 6.75 | 14.2 | 10.1 |
算法 | mAP↑ | AP↑ | |||
---|---|---|---|---|---|
卡车 | 挖掘机 | 吊车 | 装载机 | ||
YOLOv5s | 93.6 | 95.7 | 97.9 | 98.6 | 82.2 |
CRM-YOLOv5s | 97.4 | 97.2 | 95.4 | 97.5 | 95.5 |
Tab. 7 Comparison of detection performance before and after improving YOLOv5s
算法 | mAP↑ | AP↑ | |||
---|---|---|---|---|---|
卡车 | 挖掘机 | 吊车 | 装载机 | ||
YOLOv5s | 93.6 | 95.7 | 97.9 | 98.6 | 82.2 |
CRM-YOLOv5s | 97.4 | 97.2 | 95.4 | 97.5 | 95.5 |
算法 | NSA | GSI | MOTA/% | IDF1/% | IDs |
---|---|---|---|---|---|
算法1 | ― | ― | 84.1 | 86.4 | 32 |
算法2 | √ | ― | 85.7 | 86.6 | 30 |
算法3 | ― | √ | 85.9 | 87.1 | 27 |
算法4 | √ | √ | 86.9 | 87.6 | 22 |
Tab. 8 Ablation experiment results of improvement points
算法 | NSA | GSI | MOTA/% | IDF1/% | IDs |
---|---|---|---|---|---|
算法1 | ― | ― | 84.1 | 86.4 | 32 |
算法2 | √ | ― | 85.7 | 86.6 | 30 |
算法3 | ― | √ | 85.9 | 87.1 | 27 |
算法4 | √ | √ | 86.9 | 87.6 | 22 |
算法 | MOTA/% | IDF1/% | IDs |
---|---|---|---|
YOLOv5s+ByteTrack | 84.1 | 86.4 | 32 |
CRM-YOLOv5s+ByteTrack | 86.3 | 88.2 | 27 |
YOLOv5s+NG-ByteTrack | 86.9 | 87.6 | 22 |
CRM-YOLOv5s+NG-ByteTrack | 88.6 | 90.1 | 17 |
Tab. 9 Ablation experiment results of detection and tracking algorithms
算法 | MOTA/% | IDF1/% | IDs |
---|---|---|---|
YOLOv5s+ByteTrack | 84.1 | 86.4 | 32 |
CRM-YOLOv5s+ByteTrack | 86.3 | 88.2 | 27 |
YOLOv5s+NG-ByteTrack | 86.9 | 87.6 | 22 |
CRM-YOLOv5s+NG-ByteTrack | 88.6 | 90.1 | 17 |
算法 | MOTA/% | IDF1/% | IDs |
---|---|---|---|
DeepSORT[ | 72.4 | 84.7 | 42 |
StrongSORT[ | 73.1 | 82.9 | 40 |
BoTSORT[ | 75.5 | 79.8 | 52 |
FairMOT[ | 81.3 | 85.2 | 76 |
MOTDT[ | 70.8 | 81.5 | 38 |
ByteTrack[ | 83.2 | 85.6 | 34 |
本文算法 | 88.6 | 90.1 | 17 |
Tab. 10 Comparison experiment results of tracking algorithms
算法 | MOTA/% | IDF1/% | IDs |
---|---|---|---|
DeepSORT[ | 72.4 | 84.7 | 42 |
StrongSORT[ | 73.1 | 82.9 | 40 |
BoTSORT[ | 75.5 | 79.8 | 52 |
FairMOT[ | 81.3 | 85.2 | 76 |
MOTDT[ | 70.8 | 81.5 | 38 |
ByteTrack[ | 83.2 | 85.6 | 34 |
本文算法 | 88.6 | 90.1 | 17 |
算法 | mAP@0.5/% | mAP@0.5:0.95/% | 帧率/(frame·s-1) |
---|---|---|---|
YOLOv5s | 92.0 | 60.2 | 28.4 |
CRM-YOLOv5s | 96.9 | 63.4 | 35.9 |
Tab. 11 Comparison of reasoning experimental results
算法 | mAP@0.5/% | mAP@0.5:0.95/% | 帧率/(frame·s-1) |
---|---|---|---|
YOLOv5s | 92.0 | 60.2 | 28.4 |
CRM-YOLOv5s | 96.9 | 63.4 | 35.9 |
[1] | WONG S Y, CHOE C W C, GOH H H, et al. Power transmission line fault detection and diagnosis based on artificial intelligence approach and its development in UAV: a review [J]. Arabian Journal for Science and Engineering, 2021, 46(10): 9305-9331. |
[2] | 闫钧华,张琨,施天俊,等.融合多层级特征的遥感图像地面弱小目标检测[J].仪器仪表学报,2022, 43(3): 221-229. |
YAN J H, ZHANG K, SHI T J, et al. Multi-level feature fusion based dim small ground target detection in remote sensing images [J]. Journal of Scientific Instrument, 2022, 43(3): 221-229. | |
[3] | 郝帅,赵新生,马旭,等.基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J].图学学报,2023, 44(4): 667-676. |
HAO S, ZHAO X S, MA X, et al. Multi- class defect target detection method for transmission lines based on TR-YOLOv5s [J]. Journal of Graphics, 2023, 44(4): 667-676. | |
[4] | 葛雯,姜添元.改进YOLO与Deepsort检测跟踪算法的研究[J].计算机仿真,2022, 39(5): 186-190. |
GE W, JIANG T Y. Research on improved YOLO and Deepsort detection and tracking algorithm [J]. Computer Simulation, 2022, 39(5): 186-190. | |
[5] | 黄战华,陈智林,张晗笑,等.基于音视频信息融合的目标检测与跟踪算法[J].应用光学,2021, 42(5): 867-876. |
HUANG Z H, CHEN Z L, ZHANG H X, et al. Object detection and tracking algorithm based on audio-visual information fusion [J]. Journal of Applied Optics, 2021, 42(5): 867-876. | |
[6] | 薛俊韬,马若寒,胡超芳,等.基于MobileNet的多目标跟踪深度学习算法[J].控制与决策,2021, 36(8): 1991-1996. |
XUE J T, MA R H, HU C F, et al. Deep learning algorithm based on MobileNet for multi-target tracking [J]. Control and Decision, 2021, 36(8): 1991-1996. | |
[7] | 涂淑琴,汤寅杰,李承桀,等.基于改进ByteTrack算法的群养生猪行为识别与跟踪技术[J].农业机械学报,2022, 53(12): 264-272. |
TU S Q, TANG Y J, LI C J, et al. Behavior recognition and tracking technology of group-raised pigs based on improved ByteTrack algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 264-272. | |
[8] | 张彩煜,李明磊,魏大洲,等.基于改进FairMOT算法的热红外影像目标跟踪[J].计算机仿真,2023, 40(12): 304-308. |
ZHANG C Y, LI M L, WEI D Z, et al. Object tracking in thermal infrared images based on improved FairMOT algorithm [J]. Computer Simulation, 2023, 40(12): 304-308. | |
[9] | HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. |
[10] | YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 11863-11874. |
[11] | SELVARAJU R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |
[12] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
[13] | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
[14] | 谌海云,黄忠义,王海川,等.基于改进Tracktor的行人多目标跟踪算法[J].计算机工程与应用,2024, 60(8): 242-249. |
SHEN H Y, HUANG Z Y, WANG H C, et al. Improved Tracktor-based pedestrian multi-objective tracking algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 242-249. | |
[15] | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Computer Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. |
[16] | ZHU L, WANG X, KE Z, et al. BiFormer: Vision Transformer with bi-level routing attention [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333. |
[17] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
[18] | YU Z, HUANG H, CHEN W, et al. YOLO-FaceV2: a scale and occlusion aware face detector [J]. Pattern Recognition, 2024, 155: No.110714. |
[19] | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 3645-3649. |
[20] | DU Y, ZHAO Z, SONG Y, et al. StrongSORT: make DeepSORT great again [J]. IEEE Transactions on Multimedia, 2023, 25: 8725-8737. |
[21] | AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking [EB/OL]. [2023-09-01]. . |
[22] | ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking [J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087. |
[23] | CHEN L, AI H, ZHUANG Z, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification [C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. |
[24] | ZHANG Y, SUN P, JANG Y, et al. ByteTrack: multi-object tracking by associating every detection box [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13682. Cham: Springer, 2022: 1-21. |
[1] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
[2] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
[3] | Peiyu JIANG, Yongguang WANG, Yating REN, Shuochen LI, Huobin TAN. Object detection uncertainty measurement scheme based on guide to the expression of uncertainty in measurement [J]. Journal of Computer Applications, 2025, 45(7): 2162-2168. |
[4] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[5] | Qingqing ZHAO, Bin HU. Moving pedestrian detection neural network with invariant global sparse contour point representation [J]. Journal of Computer Applications, 2025, 45(4): 1271-1284. |
[6] | Yang HOU, Qiong ZHANG, Zixuan ZHAO, Zhengyu ZHU, Xiaobo ZHANG. YOLOv5s-MRD: efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 2025, 45(4): 1317-1324. |
[7] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[8] | Chuanhao ZHANG, Xiaohan TU, Xuehui GU, Bo XUAN. LiDAR-camera 3D object detection based on multi-modal information mutual guidance and supplementation [J]. Journal of Computer Applications, 2025, 45(3): 946-952. |
[9] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[10] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[11] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[12] | Shijia WEN, Shijun JING. Dynamic visual SLAM algorithm incorporating object detection and feature point association [J]. Journal of Computer Applications, 2025, 45(2): 610-615. |
[13] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[14] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[15] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||