Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1317-1324.DOI: 10.11772/j.issn.1001-9081.2024040527
• Multimedia computing and computer simulation • Previous Articles Next Articles
Yang HOU1, Qiong ZHANG2, Zixuan ZHAO2, Zhengyu ZHU2, Xiaobo ZHANG2()
Received:
2024-05-06
Revised:
2024-10-26
Accepted:
2024-10-30
Online:
2025-01-03
Published:
2025-04-10
Contact:
Xiaobo ZHANG
About author:
HOU Yang, born in 1987, M. S., engineer. Her research interests include internet of things (industrial automation direction), big data.Supported by:
通讯作者:
张晓博
作者简介:
侯阳(1987—),女,黑龙江加格达奇人,工程师,硕士,主要研究方向:物联网(工业自动化方向)、大数据基金资助:
CLC Number:
Yang HOU, Qiong ZHANG, Zixuan ZHAO, Zhengyu ZHU, Xiaobo ZHANG. YOLOv5s-MRD: efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s[J]. Journal of Computer Applications, 2025, 45(4): 1317-1324.
侯阳, 张琼, 赵紫煊, 朱正宇, 张晓博. 基于YOLOv5s的复杂场景下高效烟火检测算法YOLOv5s-MRD[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1317-1324.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040527
实验 轮次 | MPDIoU | RevCol | Dyhead | 计算量/ GFLOPs | mAP@0.5 | 准确率 | 召回率 |
---|---|---|---|---|---|---|---|
1 | 24.00 | 0.43 | 0.91 | 0.80 | |||
2 | √ | 23.80 | 0.44 | 0.91 | 0.83 | ||
3 | √ | √ | 17.72 | 0.45 | 0.94 | 0.85 | |
4 | √ | √ | √ | 17.61 | 0.47 | 0.97 | 0.91 |
Tab. 1 Influence of different improved methods on model detection performance
实验 轮次 | MPDIoU | RevCol | Dyhead | 计算量/ GFLOPs | mAP@0.5 | 准确率 | 召回率 |
---|---|---|---|---|---|---|---|
1 | 24.00 | 0.43 | 0.91 | 0.80 | |||
2 | √ | 23.80 | 0.44 | 0.91 | 0.83 | ||
3 | √ | √ | 17.72 | 0.45 | 0.94 | 0.85 | |
4 | √ | √ | √ | 17.61 | 0.47 | 0.97 | 0.91 |
算法 | 准确率 | 召回率 |
---|---|---|
BoWFire | 0.90 | 0.66 |
Xception | 0.90 | 0.86 |
KutralNet | 0.92 | 0.67 |
FireNet | 0.93 | 0.90 |
YOLOv6s | 0.92 | 0.84 |
YOLOv8s | 0.93 | 0.85 |
YOLOv9s | 0.96 | 0.90 |
YOLOv5s-MRD | 0.98 | 0.91 |
Tab. 2 Comparison results of different algorithms on DFS dataset
算法 | 准确率 | 召回率 |
---|---|---|
BoWFire | 0.90 | 0.66 |
Xception | 0.90 | 0.86 |
KutralNet | 0.92 | 0.67 |
FireNet | 0.93 | 0.90 |
YOLOv6s | 0.92 | 0.84 |
YOLOv8s | 0.93 | 0.85 |
YOLOv9s | 0.96 | 0.90 |
YOLOv5s-MRD | 0.98 | 0.91 |
算法 | Fire Detection | D-Fire | ||
---|---|---|---|---|
准确率 | 召回率 | 准确率 | 召回率 | |
BoWFire | 0.90 | 0.57 | 0.79 | 0.61 |
Xception | 0.85 | 0.80 | 0.89 | 0.95 |
KutralNet | 0.93 | 0.92 | 0.85 | 0.85 |
FireNet | 0.92 | 0.86 | 0.87 | 0.89 |
YOLOv6s | 0.92 | 0.90 | 0.89 | 0.85 |
YOLOv8s | 0.93 | 0.92 | 0.88 | 0.88 |
YOLOv9s | 0.91 | 0.87 | 0.84 | 0.70 |
YOLOv5s-MRD | 0.94 | 0.93 | 0.99 | 0.83 |
Tab. 3 Comparison results of different algorithms on Fire Detection and D-Fire datasets
算法 | Fire Detection | D-Fire | ||
---|---|---|---|---|
准确率 | 召回率 | 准确率 | 召回率 | |
BoWFire | 0.90 | 0.57 | 0.79 | 0.61 |
Xception | 0.85 | 0.80 | 0.89 | 0.95 |
KutralNet | 0.93 | 0.92 | 0.85 | 0.85 |
FireNet | 0.92 | 0.86 | 0.87 | 0.89 |
YOLOv6s | 0.92 | 0.90 | 0.89 | 0.85 |
YOLOv8s | 0.93 | 0.92 | 0.88 | 0.88 |
YOLOv9s | 0.91 | 0.87 | 0.84 | 0.70 |
YOLOv5s-MRD | 0.94 | 0.93 | 0.99 | 0.83 |
模型 | 计算量/GFLOPs |
---|---|
YOLOv6s | 44.90 |
YOLOv8s | 28.82 |
YOLOv9s | 39.64 |
YOLOv5s-MRD | 17.61 |
Tab. 4 Comparison of time complexity
模型 | 计算量/GFLOPs |
---|---|
YOLOv6s | 44.90 |
YOLOv8s | 28.82 |
YOLOv9s | 39.64 |
YOLOv5s-MRD | 17.61 |
1 | DE LEÓN-RUIZ J E, CARVAJAL-MARISCAL I, DE LA CRUZ-ÁVILA M, et al. Image convolution-based experimental technique for flame front detection and dimension estimation: a case study on laminar-to-transition jet diffusion flame height measurement[J]. Measurement Science and Technology, 2022, 33(7): No.075406. |
2 | JEON M, CHOI H S, LEE J, et al. Multi-scale prediction for fire detection using convolutional neural network[J]. Fire Technology, 2021, 57(5):2533-2551. |
3 | BAI X, WANG Z. Research on forest fire detection technology based on deep learning[C]// Proceedings of the 2021 International Conference on Computer Network, Electronic and Automation. Piscataway: IEEE, 2021: 85-90. |
4 | WANG Z, WU L, LI T, et al. A smoke detection model based on improved YOLOv5[J]. Mathematics, 2022, 10(7): No.1190. |
5 | 吴凡. 基于深度学习的火灾检测算法研究与实现[D]. 杭州:杭州电子科技大学, 2020:1-67. |
WU F. Research and implementation of fire detection algorithm based on deep learning[D]. Hangzhou: Hangzhou Dianzi University, 2020:1-67. | |
6 | ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points[EB/OL]. [2024-04-25].. |
7 | 谢书翰,张文柱,程鹏,等. 嵌入通道注意力的YOLOv4火灾烟雾检测模型[J]. 液晶与显示, 2021, 36(10): 1445-1453. |
XIE S H, ZHANG W Z, CHENG P, et al. Firesmoke detection model based on YOLOv4 with channel attention[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1445-1453. | |
8 | 邹辉军,焦良葆,孟琳,等. 基于CG-yolo的烟火检测[J]. 计算机与数字工程, 2022, 50(1): 206-212. |
ZOU H J, JIAO L B, MENG L, et al. Detection of fireworks based on CG-yolo[J]. Computer and Digital Engineering, 2022, 50(1): 206-212. | |
9 | HE Y, HU J, ZENG M, et al. DCGC-YOLO: the efficient dual-channel bottleneck structure YOLO detection algorithm for fire detection[J]. IEEE Access, 2024, 12: 65254-65265. |
10 | WANG Y, HU Y. Smoke and fire detection algorithm based on improved YOLOv5[C]// Proceedings of the 6th International Conference on Intelligent Autonomous Systems. Piscataway: IEEE, 2023: 82-87. |
11 | XU S, JI Y, WANG G, et al. GFSPP-YOLO: a light YOLO model based on group fast spatial pyramid pooling[C]// Proceedings of the IEEE 11th International Conference on Information, Communication and Networks. Piscataway: IEEE, 2023: 733-738. |
12 | PHAN D T, YAP K H, GARG K, et al. Vision-based early fire and smoke detection for smart factory applications using FFS-YOLO[C]// Proceedings of the IEEE 25th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2023: 1-6. |
13 | WANG X, JING Z, SHI L, et al. MA-YOLO: a lightweight vehicle detection framework based on YOLO[C]// Proceedings of the 2023 International Conference on Artificial Intelligence and Automation Control. Piscataway: IEEE, 2023: 277-281. |
14 | CAI Y, ZHOU Y, HAN Q, et al. Reversible column networks[EB/OL]. [2023-02-01].. |
15 | MA S, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2023-07-14].. |
16 | DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7369-7378. |
17 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773. |
18 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
19 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. |
20 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE, 2017, 39(6): 1137-1149. |
21 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. |
22 | WANG X, ZHANG S, YU Z, et al. Scale-equalizing pyramid convolution for object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13356-13365. |
23 | YANG Z, LIU S, HU H, et al. RepPoints: point set representation for object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9656-9665. |
24 | ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9756-9765. |
25 | CHEN Y, DAI X, LIU M, et al. Dynamic ReLU[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12364. Cham: Springer, 2020: 351-367. |
26 | DUNNINGS A J, BRECKON T P. Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection[C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1558-1562. |
27 | SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: the FLAME dataset[J]. Computer Networks, 2021, 193: No.108001. |
28 | AYALA A, FERNANDES B, CRUZ F, et al. KutralNet: a portable deep learning model for fire recognition[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. |
29 | LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-09-07].. |
30 | Ultralytics. YOLOv8[EB/OL]. [2024-04-26].. |
31 | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15089. Cham: Springer, 2025: 1-21. |
32 | CHINO D Y T, AVALHAIS L P S, RODRIGUES J F, et al. BoWFire: detection of fire in still images by integrating pixel color and texture analysis[C]// Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images. Piscataway: IEEE, 2015: 95-102. |
[1] | Qingqing ZHAO, Bin HU. Moving pedestrian detection neural network with invariant global sparse contour point representation [J]. Journal of Computer Applications, 2025, 45(4): 1271-1284. |
[2] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[3] | Chuanhao ZHANG, Xiaohan TU, Xuehui GU, Bo XUAN. LiDAR-camera 3D object detection based on multi-modal information mutual guidance and supplementation [J]. Journal of Computer Applications, 2025, 45(3): 946-952. |
[4] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[5] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[6] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[7] | Shijia WEN, Shijun JING. Dynamic visual SLAM algorithm incorporating object detection and feature point association [J]. Journal of Computer Applications, 2025, 45(2): 610-615. |
[8] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[9] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[10] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[11] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[14] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[15] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||