Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3214-3220.DOI: 10.11772/j.issn.1001-9081.2024101438
• Data science and technology • Previous Articles
Yuhe XIA1,2, Xiaodong WANG1,2, Qixue HE1,2()
Received:
2024-10-12
Revised:
2024-12-09
Accepted:
2024-12-13
Online:
2024-12-23
Published:
2025-10-10
Contact:
Qixue HE
About author:
XIA Yuhe,born in 1999, M. S. candidate. Her research interestsinclude anomaly detection, machine learning, big data analysis.通讯作者:
何启学
作者简介:
夏雨禾(1999—),女,四川蓬溪人,硕士研究生,主要研究方向:异常检测、机器学习、大数据分析基金资助:
CLC Number:
Yuhe XIA, Xiaodong WANG, Qixue HE. Time series anomaly detection based on frequency domain enhanced graph variational learning[J]. Journal of Computer Applications, 2025, 45(10): 3214-3220.
夏雨禾, 王晓东, 何启学. 基于频域增强图变分学习的时间序列异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3214-3220.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101438
数据集 | 训练集样本数 | 测试集样本数 | 维数 | 异常比例/% |
---|---|---|---|---|
PSM | 132 481 | 87 841 | 25 | 27.80 |
SWaT | 496 800 | 495 000 | 51 | 11.98 |
WADI | 1 048 571 | 172 803 | 128 | 5.99 |
Tab. 1 Statistics of three datasets used in experiments
数据集 | 训练集样本数 | 测试集样本数 | 维数 | 异常比例/% |
---|---|---|---|---|
PSM | 132 481 | 87 841 | 25 | 27.80 |
SWaT | 496 800 | 495 000 | 51 | 11.98 |
WADI | 1 048 571 | 172 803 | 128 | 5.99 |
模型 | PSM | SWaT | WADI | 平均F1值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | ||
LSTM-VAE | 0.810 | 0.582 | 0.677 | 0.961 | 0.593 | 0.734 | 0.874 | 0.136 | 0.235 | 0.545 |
OmniAnomaly | 0.960 | 0.809 | 0.878 | 0.717 | 0.963 | 0.822 | 0.269 | 0.982 | 0.422 | 0.707 |
USAD | 0.921 | 0.576 | 0.709 | 0.979 | 0.727 | 0.834 | 0.644 | 0.316 | 0.423 | 0.655 |
GDN | 0.434 | 0.760 | 0.552 | 0.982 | 0.673 | 0.798 | 0.982 | 0.399 | 0.567 | 0.639 |
TranAD | — | — | — | 0.976 | 0.696 | 0.815 | 0.352 | 0.829 | 0.495 | 0.655 |
GReLeN | 0.942 | 0.921 | 0.931 | 0.956 | 0.835 | 0.891 | 0.773 | 0.613 | 0.682 | 0.834 |
MST-GAT | — | — | — | 0.987 | 0.681 | 0.835 | 0.975 | 0.401 | 0.603 | 0.729 |
FeGvL | 0.974 | 0.960 | 0.967 | 0.837 | 0.997 | 0.910 | 0.978 | 0.525 | 0.683 | 0.851 |
Tab. 2 Experimental results of different models on PSM, SWaT and WADI datasets
模型 | PSM | SWaT | WADI | 平均F1值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | ||
LSTM-VAE | 0.810 | 0.582 | 0.677 | 0.961 | 0.593 | 0.734 | 0.874 | 0.136 | 0.235 | 0.545 |
OmniAnomaly | 0.960 | 0.809 | 0.878 | 0.717 | 0.963 | 0.822 | 0.269 | 0.982 | 0.422 | 0.707 |
USAD | 0.921 | 0.576 | 0.709 | 0.979 | 0.727 | 0.834 | 0.644 | 0.316 | 0.423 | 0.655 |
GDN | 0.434 | 0.760 | 0.552 | 0.982 | 0.673 | 0.798 | 0.982 | 0.399 | 0.567 | 0.639 |
TranAD | — | — | — | 0.976 | 0.696 | 0.815 | 0.352 | 0.829 | 0.495 | 0.655 |
GReLeN | 0.942 | 0.921 | 0.931 | 0.956 | 0.835 | 0.891 | 0.773 | 0.613 | 0.682 | 0.834 |
MST-GAT | — | — | — | 0.987 | 0.681 | 0.835 | 0.975 | 0.401 | 0.603 | 0.729 |
FeGvL | 0.974 | 0.960 | 0.967 | 0.837 | 0.997 | 0.910 | 0.978 | 0.525 | 0.683 | 0.851 |
F | T | G | P | R | F1 |
---|---|---|---|---|---|
× | ✓ | × | 1.000 | 0.356 | 0.525 |
× | × | ✓ | 0.297 | 0.884 | 0.472 |
✓ | × | × | 1.000 | 0.247 | 0.396 |
Tab. 3 Ablation experimental results on WADI dataset
F | T | G | P | R | F1 |
---|---|---|---|---|---|
× | ✓ | × | 1.000 | 0.356 | 0.525 |
× | × | ✓ | 0.297 | 0.884 | 0.472 |
✓ | × | × | 1.000 | 0.247 | 0.396 |
[1] | XU J H, WU H X, WANG J, et al. Anomaly Transformer: time series anomaly detection with association discrepancy[EB/OL]. [2024-09-02].. |
[2] | ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. |
[3] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
[4] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[5] | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. |
[6] | 徐胤博,于洋. 基于K-means聚类的舰船通信网络异常数据检测[J]. 舰船科学技术, 2023, 45(16): 169-172. |
XU Y B, YU Y. Detection of abnormal data in ship communication network based on K-means clustering[J]. Ship Science and Technology, 2023, 45(16): 169-172. | |
[7] | KHREICH W, KHOSRAVIFAR B, HAMOU-LHADJ A, et al. An anomaly detection system based on variable N-gram features and one-class SVM[J]. Information and Software Technology, 2017, 91: 186-197. |
[8] | SALEM O, GUERASSIMOV A, MEHAOUA A, et al. Anomaly detection in medical wireless sensor networks using SVM and linear regression models[J]. International Journal of E-Health and Medical Communications, 2014, 5(1): 20-45. |
[9] | HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395. |
[10] | ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[EB/OL]. [2024-09-01].. |
[11] | PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. |
[12] | SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837. |
[13] | AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404. |
[14] | ABDULAAL A, LIU Z, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2485-2494. |
[15] | 赵培,乔焰,胡荣耀,等. 基于多域特征提取的多变量时间序列异常检测[J]. 计算机应用, 2024, 44(11):3419-3426. |
ZHAO P, QIAO Y, HU R Y, et al. Multivariate time series anomaly detection based on multi-domain feature extraction[J]. Journal of Computer Applications, 2024, 44(11):3419-3426. | |
[16] | DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4027-4035. |
[17] | ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 841-850. |
[18] | NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers[EB/OL]. [2024-09-01].. |
[19] | ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286. |
[20] | ZHANG W, ZHANG C, TSUNG F. GRELEN: multivariate time series anomaly detection from the perspective of graph relational learning[C]// Proceedings of the 31th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2390-2397. |
[21] | MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]// Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36. |
[22] | LI D, CHEN D, JIN B, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11730. Cham: Springer, 2019: 703-716. |
[23] | TULI S, CASALE G, JENNINGS N R. TranAD: deep Transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 5(6): 1201-1214. |
[24] | DING C, SUN S, ZHAO J. MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536. |
[25] | KINGA D P, BA J L, Adam: a method for stochastic optimization[EB/OL]. [2024-08-03].. |
[26] | KITAGAWA G, GERSCH W. Linear Gaussian state space modeling[M]// Smoothness priors analysis of time series, LNS 116. New York: Springer, 1996: 55-65. |
[27] | REZENDE D J, MOHAMED S. Variational inference with normalizing flows[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1530-1538.Foundation:This work is partially supported by Technology Achievement Transfer and Transformation Demonstration Project of Sichuan Province (2023ZHCG0005).XIA Yuhe, in born 1999, M. S. candidate. Her research interests include anomaly detection, machine learning, big data analysis.WANG Xiaodong, in born 1973, research fellow. His research interests include network engineering. |
HE Qixue, in born 1978, senior engineer. His research interests include data mining, artificial intelligence. |
[1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[2] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
[3] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
[4] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
[5] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
[6] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
[7] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
[8] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[9] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
[10] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[11] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[12] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[13] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[14] | Daoquan LI, Zheng XU, Sihui CHEN, Jiayu LIU. Network traffic classification model integrating variational autoencoder and AdaBoost-CNN [J]. Journal of Computer Applications, 2025, 45(6): 1841-1848. |
[15] | Yuan SONG, Xin CHEN, Yarong LI, Yongwei LI, Yang LIU, Zhen ZHAO. Single-channel speech separation model based on auditory modulation Siamese network [J]. Journal of Computer Applications, 2025, 45(6): 2025-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||