现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD (YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU (Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。
针对内镜语义分割网络中病灶边缘信息丢失和大面积病灶分割不全的问题,提出一种引入解耦残差自注意力(DRA)的边界交叉监督语义分割网络(BCS-SegNet)。首先,引入DRA,以增强网络对远距离关联性病灶的学习能力;其次,构建跨级交叉融合(CLF)模块,从而将编码结构中的多级特征图逐对组合,进而实现在低计算成本下图像细节与语义信息的融合;最后,使用多方向多尺度的二维Gabor变换提取边缘信息,并使用空间注意力加权特征图中的边缘特征,以监督分割网络的解码过程,从而在像素级别上提供更精准的类内分割一致性。实验结果表明,在ISIC2018皮肤镜和Kvasir-SEG/CVC-ClinicDB结肠镜数据集上,BCS-SegNet的平均交并比(mIoU)和Dice系数分别为84.27%、90.68%和79.24%、87.91%;在自建食管内镜数据集上,BCS-SegNet的mIoU和Dice系数分别为82.73%和90.84%,mIoU相较于U-net和UCTransNet分别提升了3.30%和4.97%。可见,所提网络可以达到更完整的分割区域和更清晰的边缘细节等视觉效果。
为解决工业云存储系统数据遭受篡改等网络主动攻击问题,实现工业数据云端安全共享的目标,并确保工业数据传输与存储过程的机密性、完整性与可用性,提出基于工业云存储系统的数据防篡改批量审计方案。在该方案中,设计基于双线性对映射的同态数字签名算法,使第三方审计者实现对工业云存储系统数据的批量防篡改完整性检测,并及时将防篡改完整性审计结果反馈给工程服务终端用户;此外,通过加入审计者减轻工程服务终端用户的计算负担,同时确保工业加密数据在传输与存储过程中的完整性。安全性分析与性能比较结果表明,所提方案通过设计防篡改检测向量,使得第三方审计者的计算量从O(n)次双线性对操作减少到O(1)次常量级双线性对操作,极大地降低了第三方审计者的计算开销。可见,所提方案适用于需要对大量工业云存储系统核心数据文件进行防篡改检测的轻量级批量审计场景。
针对人群分析任务中往往存在的因监控与人群距离不同而导致的尺度变化大的问题,提出一种基于正态逆伽马分布的多尺度融合人群计数算法MSF(Multi-Scale Fusion crowd counting)。首先,使用传统骨架提取公共特征,通过多尺度信息提取模块获得图像中不同尺度的行人信息;其次,每个尺度的网络各自包含一个人群密度估计模块和一个用于评估每个尺度预测结果可信度的不确定估计模块;最后,多尺度预测融合模块依据可信度对多尺度预测结果进行动态融合,以获得更准确的密度回归结果。实验结果表明,现有算法密集场景识别网络(CSRNet)在通过多尺度可信融合扩展后,在UCF-QNRF数据集上人群计数的平均绝对误差(MAE)和均方误差(MSE)分别减小了4.43%和1.37%,验证了MSF算法的合理性和有效性。此外,与现有算法不同,MSF算法不仅可以预测人群密度,还可以在部署阶段提供预测的可信程度,从而使算法在实际应用中能及时预警模型预测不准确的区域,降低后续分析任务出现错误预判的风险。
针对知识追踪(KT)模型没有充分考虑学生间差异、挖掘知识状态与习题的高度匹配等问题,提出一种双层网络架构——基于个性化学习和深层次细化的知识追踪(PLDRKT)。首先,利用增强注意力机制得到习题的深层次细化表示;其次,从不同学生对习题的难度感知和学习收益方面对初步知识状态进行个性化建模;最后,利用初步知识状态和深层习题表示得到学生的深层次知识状态并预测他们的未来答题情况。将PLDRKT模型与基于对抗训练的增强知识追踪(ATKT)和集成知识追踪(ENKT)等7种模型在Statics2011、ASSIST09、ASSIST15和ASSIST17数据集上进行对比实验。实验结果显示,PLDRKT模型的曲线下面积(AUC)均有增加,在4个数据集上与不考虑习题嵌入的最优基线模型相比,分别增加了0.61、1.32、5.29和0.19个百分点,可见PLDRKT模型可以较好地建模学生知识状态并预测回答。
在计算机断层扫描(CT)和磁共振成像(MRI)的影像中肝脏与邻近脏器的灰度值相似性都比较高,为自动精确地分割肝脏,提出一种基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法MAGNet (Multi-scale feature fusion And Grid attention mechanism Network)。首先,通过注意力引导连接模块来连接高层特征和低层特征以提取出重要的上下文信息,并且在注意力引导连接模块中引入网格注意力机制来关注感兴趣的分割区域;然后,通过在单个特征图中按通道数进行分层连接形成多尺度特征融合模块,并用该模块替换基础卷积块以获取多尺度语义信息;最后,利用深度监督机制解决梯度消失、梯度爆炸和收敛过慢等问题。实验结果表明:在3DIRCADb数据集上,与U3-Net+DC方法相比,MAGNet在Dice相似系数(DSC)指标上提升了0.10个百分点,在相对体积差(RVD)指标上降低了1.97个百分点;在Sliver07数据集上,与CANet方法相比,MAGNet在DSC指标上提升了0.30个百分点,在体素重叠误差(VOE)指标上降低了0.68个百分点,在平均对称表面距离(ASD)和对称位置表面距离的均方根(RMSD)指标上分别降低了0.03 mm和0.22 mm;在某医院肝脏MRI数据集上,MAGNet在所有指标上也均具有良好的结果。另外,将MAGNet应用于3DIRCADb数据集和某医院肝脏MRI数据集进行混合形成的数据集,也取得了非常有竞争力的分割效果。
三支概念分析是人工智能领域一个非常重要的研究方向,该理论最大的优势是可以同时研究形式背景中对象“共同具有”和“共同不具有”的属性。众所周知,经过属性聚类生成的新形式背景与原形式背景具有较强的联系,同时原三支概念与经过属性聚类得到的新三支概念也存在紧密的内在联系。为此,进行属性聚类下三支概念的对比研究和分析。首先基于属性聚类提出悲观属性聚类、乐观属性聚类以及一般属性聚类的概念,并研究了这三种属性聚类的关系;然后,通过对比聚类过程与三支概念形成的过程,研究了原三支概念与新三支概念的区别,分别从面向对象和面向属性的角度提出两个最低约束指数,探索了属性聚类对三支概念格的影响,进一步丰富了三支概念分析理论,为可视化数据处理领域提供了可行的思路。
分组密码中的S盒(多输出)以及流密码中的反馈函数都需要特殊的布尔函数来保证密码算法的安全性。为解决现有流密码算法中非线性布尔函数(NLBF)可重构硬件运算单元资源占用过大、时钟频率低等问题,提出一种高效的基于与非锥(AIC)的NLBF可重构运算单元设计方法(RA-NLBF)。以密码学理论为基础,在着重分析多种流密码算法的NLBF特性,提取了涵盖与项次数、与项个数、输入端口数等NLBF函数特征的基础上,提出基于“混合极性Reed-Muller(MPRM)”和“传统布尔逻辑(TB)”双逻辑混合形式的NLBF化简方法,NLBF的与项数量减少29%,形成了适用于AIC的NLBF表达式;根据化简后的表达中与项个数、与项次数分布等特征,设计了可重构AIC单元和互联网络,形成可满足现有公开流密码算法中的NLBF运算的可重构单元。基于CMOS 180 nm工艺对提出的RA-NLBF进行逻辑综合验证,结果显示该方法的面积为12 949.67 μm2,时钟频率达到505 MHz,与现有相同功能的单元可重构序列密码逻辑单元(RSCLU)相比,面积减少了59.7%,时钟频率提高了37.3%。
非负矩阵三因子分解是潜在因子模型中的重要组成部分,由于能将原始数据矩阵分解为三个相互约束的潜因子矩阵,被广泛应用于推荐系统、迁移学习等研究领域,但目前还没有非负矩阵三因子分解的可解释性方面的研究工作。鉴于此,将用户评论文本信息当作先验知识,设计了一种基于先验知识的非负矩阵半可解释三因子分解(PE-NMTF)算法。首先利用情感分析技术提取用户评论文本信息的情感极性偏好;然后更改了非负矩阵三因子分解算法的目标函数和更新公式,巧妙地将先验知识嵌入到算法中;最后在推荐系统冷启动任务的Yelp和Amazon数据集以及图像零次识别任务的AwA和CUB数据集上与非负矩阵分解、非负矩阵三因子分解算法做了大量对比实验,实验结果表明所提算法在均方根误差(RMSE)、归一化折损累计增益(NDCG)、归一化互信息(NMI)和准确率(ACC)上都表现优异,且利用先验知识进行非负矩阵三因子分解的解释具有可行性和有效性。
针对传统基于注意力机制的神经网络不能联合关注局部特征和旋转不变特征的问题,提出一种基于多分支神经网络模型的弱监督细粒度图像分类方法。首先,用轻量级类激活图(CAM)网络定位有潜在语义信息的局部区域,设计可变形卷积的残差网络ResNet-50和旋转不变编码的方向响应网络(ORN);其次,利用预训练模型分别初始化特征网络,并输入原图和以上局部区域分别对模型进行微调;最后,组合三个分支内损失和分支间损失优化整个网络,对测试集进行分类预测。所提方法在CUB-200-2011和FGVC_Aircraft数据集上的分类准确率分别达到87.7%和90.8%,与多注意力卷积神经网络(MA-CNN)方法相比,分别提高了1.2个百分点和0.9个百分点;在Aircraft_2数据集上的分类准确率达到91.8%,比ResNet-50网络提高了4.1个百分点。实验结果表明,所提方法有效提高了弱监督细粒度图像分类的准确率。
为提升贷款金融客户行为预测的准确性,针对传统的K-最近邻(KNN)算法在数据分析中处理非数值因素的不完备问题,提出了一种采用值差度量(VDM)距离的对聚类结果迭代优化的改进KNN算法。首先对收集到的数据信息进行基于VDM距离的KNN算法的聚类,再对聚类结果进行迭代分析,最后通过联合训练提高了预测精度。基于葡萄牙零售银行2008—2013年收集的客户数据比较可知,改进的KNN算法与传统的KNN算法、基于属性值相关距离的KNN改进(FCD-KNN)算法、高斯贝叶斯算法、Gradient Boosting等现有算法相比具有更好的性能和稳定性,在银行数据预测客户行为中具有很大的应用价值。