[1] LIU X,HE Q,TIAN Y,et al. Event-based social networks:linking the online and offline social worlds[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:1032-1040. [2] MIKOLOV T,KOMBRINGK S,DEORAS A,et al. RNNLM-recurrent neural network language modeling toolkit[C]//Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway:IEEE,2011:1-4. [3] KIM Y,JERNITE Y,SONTAG D,et al. Character-aware neural language models[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:2741-2749. [4] BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Stroudsburg,PA:Association for Computational Linguistics,2016:10-21. [5] MUELLER J,GIFFORD D,JAAKKOLA T. Sequence to better sequence:continuous revision of combinatorial structures[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:2536-2544. [6] 胡懋晗. 基于生成对抗网络的文本生成的研究[D]. 成都:电子科技大学,2020:2-7.(HU M H. Research on text generation based on generative adversarial network[D]. Chengdu:University of Electronic Science and Technology of China,2020:2-7.) [7] YU L,ZHANG W,WANG J,et al. SeqGAN:sequence generative adversarial nets with policy gradient[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:2741-2749. [8] LIN K,LI D,HE X,et al. Adversarial ranking for language generation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3158-3168. [9] 康云云, 彭敦陆, 陈章, 等. ED-GAN:基于改进生成对抗网络的法律文本生成模型[J]. 小型微型计算机系统,2019,40(5):1020-1025.(KANG Y Y,PENG D L,CHEN Z,et al. ED-GAN:judicial document generating model based on improved generative adversarial networks[J]. Journal of Chinese Computer Systems, 2019,40(5):1020-1025.) [10] 喻鹏. 基于生成对抗网络的电子健康医疗数据生成[D]. 武汉:华中科技大学,2019:3-7.(YU P. GANs for electronic health record synthesis[D]. Wuhan:Huazhong University of Science and Technology,2019:3-7.) [11] GOOFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [12] 曹娟, 龚隽鹏, 张鹏洲. 数据到文本生成研究综述[J]. 计算机技术与发展,2019,29(1):80-84,89.(CAO J,GONG J P, ZHANG P Z. Review of data-to-text generation[J]. Computer Technology and Development,2019,29(1):80-84,89.) [13] KINGMA D P,WELLING M. Auto-encoding variational Bayes[EB/OL].[2020-03-04]. https://arxiv.org/pdf/1312.6114.pdf. [14] DOERSCH C. Tutorial on variational autoencoders[EB/OL].[2020-03-04]. https://arxiv.org/pdf/1606.05908.pdf. [15] 杨云龙, 孙建强, 宋国超. 基于门控循环单元和胶囊特征的文本情感分析[J]. 计算机应用, 2020, 40(9):2531-2535. (YANG Y L, SUN J Q,SONG G C. Text sentiment analysis based on feature fusion of gated recurrent unit and capsule[J]. Journal of Computer Applications, 2020, 40(9):2531-2535.) [16] 王根生, 黄学坚, 闵潞. 多元特征融合的GRU神经网络文本情感分类模型[J]. 小型微型计算机系统,2019,40(10):2130-2138.(WANG G S,HUANG X J,MIN L. GRU neural network text emotion classification model based on multi-feature fusion[J]. Journal of Chinese Computer Systems,2019,40(10):2130-2138.) [17] PAPINENI K,ROULOS S,WARD T,et al. BLEU:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2002:311-318. [18] ETHAYARAJH K,SADIGH D. BLEU neighbors:a referenceless approach to automatic evaluation[EB/OL].[2020-03-05]. https://arxiv.org/pdf/2004.12726.pdf. |