1 |
FAYYAD, USAMA M. Advances in knowledge discovery and data mining [C]// Proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 113-121. 10.1007/978-3-642-20847-8
|
2 |
YANG X, HUANG K, ZHANG R, et al. Learning latent features with infinite nonnegative binary matrix tri factorization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(6): 450-463. 10.1109/tetci.2018.2806934
|
3 |
LONG B, ZHANG M Z, YU P S. Co-clustering by block value decomposition [C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM, 2005: 40-53. 10.1145/1081870.1081949
|
4 |
WANG H, NIE F, HUANG H, et al. Fast non-negative matrix tri-factorization for large-scale data co-clustering [C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2011: 558-569. 10.1109/icdm.2011.109
|
5 |
TIAN J, QU Y. A novel framework for top-n recommendation based on non-negative matrix tri-factorization[C]// Proceedings of the 24th International Conference on Industrial Engineering and Engineering Management. Cham: Springer, 2019: 233-241. 10.1007/978-981-13-3402-3_36
|
6 |
LEE D D, SEUNG H F, Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401(2): 788-791. 10.1038/44565
|
7 |
HUANG S, XU Z, LYU J. Adaptive local structure learning for document co-clustering [J]. Knowledge-Based Systems, 2018, 81(32) 148:7484. 10.1016/j.knosys.2018.02.020
|
8 |
LI T, ZHANG Y, SINDHWANI V. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2009: 244-252. 10.3115/1687878.1687914
|
9 |
RAMOS J. Using TF-IDF to determine word relevance in document queries[C]// Proceedings of the 1st Instructional Conference on Machine Learning. Stroudsburg, PA: Association for Computational Linguistics, 2003: 29-48.
|
10 |
FU G, WANG J, DOMENICONI C, YU G. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations [J]. Bioinformatics, 2017, 34(9): 1529-1537. 10.1093/bioinformatics/btx794
|
11 |
CEDDIA G, PINOLI P, CERI S, et al. Non-negative matrix tri-factorization for data integration and network-based drug repositioning[C]// Proceedings of the 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Piscataway: IEEE, 2019: 992-1003. 10.1109/cibcb.2019.8791474
|
12 |
高科. 基于隐空间的子空间学习[D]. 天津: 天津大学, 2019: 21.
|
|
GAO K. Subspace learning based on latent space[D]. Tianjing: Tianjing University, 2019: 21.
|
13 |
汪涛, 刘阳, 席耀一. 基于图正则化非负矩阵分解的二分网络社区发现算法[J]. 电子与信息学报, 2015, 37(9): 2238-2245. 10.11999/JEIT141649
|
|
WANG T, LIU Y, XI Y Y. Identifying community in bipartite networks using graph regularized-based non-negative matrix factorization[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2238-2245. 10.11999/JEIT141649
|
14 |
金弟, 何静. 基于非负矩阵三因子分解的属性网络半监督社团发现的方法: CN110851732A[P]. 2020-02-28. 10.1007/s11704-020-9203-0
|
|
JIN D, HE J. Semi-supervised community discovery method for attribute networks based on non-negative matrix tri-factorization: CN110851732A[P]. 2020-02-28. 10.1007/s11704-020-9203-0
|
15 |
TAN B, SONG Y, ZHONG E, et al. Transitive transfer learning [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1155-1164.
|
16 |
JUNIOR W, PERES S M, FREIRE V, et al. OvNMTF algorithm: an overlapping non-negative matrix tri-factorization for coclustering [C]// Proceedings of the 2020 International Joint Conference on Neural Networks . Piscataway: IEEE, 2020: 348-353. 10.1109/ijcnn48605.2020.9207364
|
17 |
BUONO N DEL, PIO G. Non-negative matrix tri-factorization for co-clustering: an analysis of the block matrix[J]. Information Sciences, 2015, 301: 13-26. 10.1016/j.ins.2014.12.058
|
18 |
OPAR A, ZUPAN B, ZITNIK M. Fast optimization of non-negative matrix tri-factorization [J]. PLoS One, 2019, 14(9): 12-21. 10.1371/journal.pone.0217994
|
19 |
ABDOLLAHI B, NASRAOUI O. Using explainability for constrained matrix factorization [C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 79-83. 10.1145/3109859.3109913
|
20 |
LU Y, CASTELLANOS M, DAYAL U, et al. Automatic construction of a context-aware sentiment lexicon: an optimization approach[C]// Proceedings of the 20th International Conference on World Wide Web. Cham: Springer, 2011: 221-231. 10.1145/1963405.1963456
|
21 |
ZHANG Y, LAI G, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]// Proceedings of the 37th International ACM SIGIR Conference. New York: ACM, 2014: 83-92. 10.1145/2600428.2609579
|
22 |
TAO Y, JIA Y, WANG N, et al. The FacT: taming latent factor models for explainability with factorization trees[C]// Proceedings of the 42nd International ACM SIGIR Conference. New York: ACM, 2019: 413-432. 10.1145/3331184.3331244
|
23 |
WU Q, TAN M, LI X, et al. NMFE-SSCC: non-negative matrix factorization ensemble for semi-supervised collective classification [J]. Knowledge-Based Systems, 2015, 89(15): 160-172. 10.1016/j.knosys.2015.06.026
|
24 |
XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 182-199. 10.1109/cvpr.2018.00581
|
25 |
KEMP C, TENENBAUM J B, GRIFFITHS T L, et al. Learning systems of concepts with an infinite relational model [J]. Cognitive Science, 2006, 12(21): 313-329.
|
26 |
WAH C, BRANSON S, WELINDER P, et al. Caltech-UCSD birds- 200-2011, CNS-TR-2010-001[R/OL]. California Institute of Technology,2010[2021-06-01]..
|
27 |
CHEN G, WANG F, ZHANG C. Collaborative filtering using orthogonal nonnegative matrix tri-factorization[J]. Information Processing & Management, 2009, 45(3): 113-125. 10.1016/j.ipm.2008.12.004
|