传统数据增强技术,如同义词替换、随机插入和随机删除等,可能改变文本的原始语义,甚至导致关键信息丢失。此外,在文本分类任务中,数据通常包含文本部分和标签部分,然而传统数据增强方法仅针对文本部分。为解决这些问题,提出一种结合标签混淆的数据增强(LCDA)技术,从文本和标签这2个基本方面入手,为数据提供全面的强化。在文本方面,通过对文本进行标点符号随机插入和替换以及句末标点符号补齐等增强,在保留全部文本信息和顺序的同时增加文本的多样性;在标签方面,采用标签混淆方法生成模拟标签分布替代传统的one-hot标签分布,以更好地反映实例和标签与标签之间的关系。在THUCNews(TsingHua University Chinese News)和Toutiao这2个中文新闻数据集构建的小样本数据集上分别结合TextCNN、TextRNN、BERT(Bidirectional Encoder Representations from Transformers)和RoBERTa-CNN(Robustly optimized BERT approach Convolutional Neural Network)文本分类模型的实验结果表明,与增强前相比,性能均得到显著提升。其中,在由THUCNews数据集构造的50-THU数据集上,4种模型结合LCDA技术后的准确率相较于增强前分别提高了1.19、6.87、3.21和2.89个百分点;相较于softEDA(Easy Data Augmentation with soft labels)方法增强的模型分别提高了0.78、7.62、1.75和1.28个百分点。通过在文本和标签这2个维度的处理结果可知,LCDA技术能显著提升模型的准确率,在数据量较少的应用场景中表现尤为突出。
知识图谱(KG)作为一种辅助信息能够有效提高推荐模型的推荐质量,但现有的基于图神经网络(GNN)的知识感知推荐模型存在节点信息利用不均衡问题。为此,提出一种基于知识感知和跨层次对比学习的推荐方法(KCCL)。所提方法在GNN的知识感知推荐模型基础上引入对比学习范式,以缓解稀疏的交互数据和嘈杂的KG在信息聚合时节点间依赖的关系偏离真实表示导致节点信息利用不均衡的问题。首先,将用户?物品交互图和物品知识图整合为一个异质图,并通过基于图注意力机制的GNN实现用户和物品的节点表示;其次,在信息传播聚合层中加入一致的噪声进行数据增强,得到不同阶层的节点表示,并将获得的最外层节点表示与最内层节点表示进行跨层次对比学习;最后,联合优化推荐监督任务和对比学习辅助任务,得到最终各节点表示。在DBbook2014和MovieLens-1m数据集上的实验结果显示,相较于次优对比方法,KCCL的Recall@10分别提升了3.66%和0.66%,NDCG@10分别提升了3.57%和3.29%,验证了KCCL的有效性。
传统多维标度方法学习得到的低维嵌入保持了数据点的拓扑结构,但忽略了低维嵌入数据类别间的判别性。基于此,提出一种基于多维标度法的无监督判别性特征学习方法——判别多维标度模型(DMDS),该模型能在学习低维数据表示的同时发现簇结构,并通过使同簇的低维嵌入更接近,让学习到的数据表示更具有判别性。首先,设计了DMDS对应的目标公式,体现所学习特征在保留拓扑性的同时增强判别性;其次,对目标函数进行了推理和求解,并根据推理过程设计所对应的迭代优化算法;最后,在12个公开的数据集上对聚类平均准确率和平均纯度进行对比实验。实验结果表明,根据Friedman统计量综合评价DMDS在12个数据集上的性能优于原始数据表示和传统多维标度模型的数据表示,它的低维嵌入更具有判别性。
针对现有小目标跟踪算法的鲁棒性差、精度及成功率低的问题,提出一种基于孪生网络和Transformer的小目标跟踪算法SiamTrans。首先,基于Transformer机制设计一种相似度响应图计算模块。该模块叠加若干层特征编码-解码结构,并利用多头自注意力机制和多头跨注意力机制在不同层次的搜索区域特征图中查询模板特征图信息,从而避免陷入局部最优解,并获得一个高质量的相似度响应图;其次,在预测子网中设计一个基于Transformer机制的预测模块(PM),并利用自注意力机制处理预测分支特征图中的冗余特征信息,以提高不同预测分支的预测精度。在Small90数据集上,相较于TransT(Transformer Tracking)算法,所提算法的跟踪精度和跟踪成功率分别高8.0和9.5个百分点。可见,所提出的算法具有更优异的小目标跟踪性能。
当前网络安全事故频发,传统被动防御技术已经无法应对未知的网络安全威胁。针对这一问题,构建了多阶段演化信号博弈模型,并以防御方主动发射诱导信号进行安全防御为背景,提出了一种基于多阶段演化信号博弈模型的移动目标防御(MTD)决策算法。首先,以博弈双方不完全信息约束及完全理性前提为假设对模型的基本元素进行定义并进行模型整体理论分析;然后,设计了攻防策略的收益量化方法,并给出了详细的最优策略均衡求解过程;最后,引入MTD方法分析多阶段攻防情况下双方策略的演化趋势。实验结果表明,所提算法能准确预测出不同阶段最优防御策略,而且对新型网络主动防御技术研究具有指导意义。同时,通过蒙特卡洛仿真实验,将所提算法与传统随机均匀策略选择算法进行对比,所得结果验证了所提算法的有效性和安全性。
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。
与二维可见光图像相比,三维点云在空间中保留了物体真实丰富的几何信息,能够应对单目标跟踪问题中存在尺度变换的视觉挑战。针对三维目标跟踪精度受到点云数据稀疏性导致的信息缺失影响,以及物体位置变化带来的形变影响这两个问题,在端到端的学习模式下提出了由三个模块构成的提案聚合网络,通过在最佳提案内定位物体的中心来确定三维边界框从而实现三维点云中的单目标跟踪。首先,将模板和搜索区域的点云数据转换为鸟瞰伪图,模块一通过空间和跨通道注意力机制丰富特征信息;然后,模块二用基于锚框的深度互相关孪生区域提案子网给出最佳提案;最后,模块三先利用最佳提案对搜索区域的感兴趣区域池化操作来提取目标特征,随后聚合了目标与模板特征,利用稀疏调制可变形卷积层来解决点云稀疏以及形变的问题并确定了最终三维边界框。在KITTI跟踪数据集上把所提方法与最新的三维点云单目标跟踪方法进行比较的实验结果表明:在汽车类综合性实验中,真实场景中所提方法在成功率上提高了1.7个百分点,精确率上提高了0.2个百分点;在多类别扩展性实验上,即在汽车、货车、骑车人以及行人这4类上所提方法的平均成功率提高了0.8个百分点,平均精确率提高了2.8个百分点。可见,所提方法能够解决三维点云中的单目标跟踪问题,使得三维目标跟踪结果更加精确。
在软件定义网络(SDN)中,各类网络应用的独立开发以及多用户的网络管理可能导致下发至交换设备的流规则发生冲突,而控制平面与转发平面的分离使得交换设备缺乏策略分析能力,无法独立检测内部的流规则冲突。针对这一问题,提出一种流规则冲突检测系统和检测算法。首先,通过监听、捕获控制平面与转发平面之间的OpenFlow报文,获取即将下发的流规则的信息。然后,使用冲突检测算法判定流规则的冲突类型。该算法根据流规则的匹配协议选择对应的规则集合,从而缩小了检测规模;而且在检测时优先对无冲突(NC)规则的特征进行检测,使得对NC规则的检测效率要高于其他类型的冲突规则。最后,根据冲突类型对流规则进行冲突消解。实验结果表明,所提冲突检测算法的检测准确率可以达到100%,与动态冲突检测模型相比该算法在同等规模的规则集合下的检测时间缩短约47%。且检测时间随NC规则占比的提高而缩短。
针对社交媒体平台上消息内容普遍很短、传播结构中存在大量空转发、用户角色与内容间的失配等条件约束,提出了一种基于传播网络中的用户属性信息和消息内容的谣言检测模型GMB_GMU。首先以用户属性为节点、传播链为边构建用户传播网络,并引入图注意力网络(GAT)得到用户属性的增强表示;同时,基于此用户传播网络,利用node2vec得到用户的结构表征,并使用互注意机制对其进行增强。另外,引入BERT建立源帖内容表征。最后,利用多模态门控单元(GMU)对用户属性表征、结构表征和源帖内容表征进行融合,从而得到消息的最终表征。实验结果表明,GMB_GMU模型在公开的Weibo数据上的准确率达到0.952,能够有效识别谣言事件,效果明显优于基于循环神经网络(RNN)和其他神经网络基准模型的传播算法。
目前,由于可供网络协议开发的硬件资源极其有限,而且真实性能评估要求硬件上的组网产生了高额的硬件成本。因此,对于大多数网络协议的研究以及性能评估都是基于纯软件系统进行的,其结果仅局限于理论意义。为了解决这些问题,基于GNU Radio平台以及二代通用软件无线电外设(USRP2)设计和实现了分布式无线网络媒体介入控制(MAC)协议的半实物仿真系统。该系统以IEEE802.11分布式协调功能(DCF)为协议框架,结合离散事件仿真技术,依靠较少的硬件资源(一台个人计算机(PC)和两台USRP2)模拟了多个节点的无线通信网络。实现中,MAC层协议使用简洁的Python语言进行系统开发,具有很大的灵活性,而且扩展性和可移植性强;物理层使用高效的C++语言对信号进行模块化处理,并利用USRP2射频硬件在真实信道上进行数据传输。将系统的节点发送概率以及吞吐量实测数据分别与Bianchi算法以及基于时隙分析的饱和吞吐量计算模型进行了对比,对比结果的吻合性说明了网络仿真平台的可靠性。
针对当前决策树算法较少考虑训练集的嘈杂程度对模型的影响,以及传统驻留内存算法处理海量数据困难的问题,提出一种基于Hadoop平台的不确定概率C4.5算法——IP-C4.5算法。在训练模型时,IP-C4.5算法认为用于建树的训练集是不可靠的,通过用基于不确定概率的信息增益率作为分裂属性选择标准,减小了训练集的嘈杂性对模型的影响。在Hadoop平台下,通过将IP-C4.5算法以文件分裂的方式进行MapReduce化程序设计,增强了处理海量数据的能力。与C4.5和完全信条树(CCDT)算法的对比实验结果表明,在训练集数据是嘈杂的情况下,IP-C4.5算法的准确率相对更高,尤其当数据嘈杂度大于10%时,表现更加优秀;并且基于Hadoop的并行化的IP-C4.5算法具有处理海量数据的能力。
针对增强图像中的弱边缘、细节纹理和消除二阶偏微分方程在图像平滑部分的阶梯效应问题,提出一种各向异性四阶偏微分方程耦合二阶偏微分方程的图像放大算法。算法通过像素的局部方差自适应约束阈值,实现图像中不同结构的各向异性四阶扩散,增强弱边缘和细节纹理,去除平滑部分阶梯效应,同时耦合改进的总变差方法和受梯度约束的冲激滤波器对边缘进行增强,放大算法采用双正交映射实现图像退化模型的约束。仿真实验证明该算法能够很好地增强边缘、细节和纹理,去除阶梯效应。与其他二阶偏微分方程放大算法比较,算法具有较好的主观视觉效果,算法放大图像的峰值信噪比(PSNR)和平均结构相似性测度(MSSIM)也高于其他二阶偏微分方程算法,其中平滑部分较多图像的PSNR比基于改进的总变差放大算法提高1 dB左右,细节纹理较多的图像提高0.5 dB以上。该算法的放大图像更加自然,弱边缘和细节能够得到分辨率增强。
针对事物可拓状态的识别问题,提出了一种可拓模式判别模型.首先,给出了可拓模式判别的定义;然后,分析了论域的静态划分与动态划分特性;其次,设计出可拓模式判别的一般框架,并给出了对判别结论进行质变与量变的量化处理公式;最后,利用提出的方案对实例的一般状态及可拓状态进行了判别.实验结果表明了该方案对对象可拓状态表达、分析与判别的可行性.模型能够有效地解决传统可拓模式分类器所无法解决的可拓性与状态变换的判别问题.
针对自动门运行过程中的效率及安全问题,提出了一种基于全方位视觉传感器(ODVS)的自动门安全和节能智能检测技术。首先,采用ODVS采集自动门周边的360°全景图,并对全景图像按检测要求进行预处理;接着,采用一种运动历史/能量图像(MHoEI)算法来检测和跟踪运动目标前景对象;然后,根据前景对象的运动方向和空间位置等信息来分析行人的行为;最后,根据行人的行为和状态来控制自动门的开启和关闭,以达到自动门安全性、节能性和舒适性的控制目标。实验结果表明,该检测方法能有效地识别自动门周围的行人行为,有助于避免各种自动门安全隐患发生,同时能高精度统计出进出自动门的人流量。
针对无线传感器网络(WSN)中的信任值更新问题,提出了一种基于模糊预测(FP)的无线传感器网络信任值更新的方法——RMFP。算法采用模糊数学理论方法,利用模糊隶属函数来全面地刻画节点的表现行为,并将其转换成节点的模糊隶属度,最后将模糊隶属度进行整合以实现节点的信任值更新。仿真实验表明,所提算法在整合节点信任值精确度方面提高了10.8%,在判断可疑节点的速度方面提高了两倍。这说明基于模糊预测的节点信任值更新算法在发现并摒除恶意节点的准确率和速度上均有显著的效果,尤其是针对前期取得高信任的恶意节点的判断具有很强的优势。