计算机应用 ›› 2015, Vol. 35 ›› Issue (8): 2147-2152.DOI: 10.11772/j.issn.1001-9081.2015.08.2147

• 先进计算 • 上一篇    下一篇

团购模式下云制造服务资源组合优化模型与算法

马书刚1, 杨建华2   

  1. 1. 河北经贸大学 商学院, 石家庄 050061;
    2. 北京科技大学 东凌经济管理学院, 北京 100083
  • 收稿日期:2015-03-25 修回日期:2015-06-01 出版日期:2015-08-10 发布日期:2015-08-14
  • 通讯作者: 马书刚(1977-),男,河北邢台人,讲师,博士,主要研究方向:制造服务管理、供应链与物流管理,mashugang@126.com
  • 作者简介:杨建华(1965-),男,山东潍坊人,教授,博士,主要研究方向:制造服务管理。
  • 基金资助:

    国家自然科学基金资助项目(71231001);河北省高等学校科学研究计划项目(QN20131133);河北省软科学项目(15454102D);河北省教育厅人文社会科学研究重大课题攻关项目(ZD201447);河北省高等学校人文社会科学重点研究基地"河北经贸大学现代商贸服务业研究中心"项目。

Cloud manufacturing service resource combination optimization model and algorithm under group buying mode

MA Shugang1, YANG Jianhua2   

  1. 1. School of Business, Hebei University of Economics and Business, Shijiazhuang Hebei 050061, China;
    2. Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2015-03-25 Revised:2015-06-01 Online:2015-08-10 Published:2015-08-14

摘要:

在云制造服务环境中,为了进一步降低需求者的服务成本,提出了一种团购模式下云制造服务资源组合优化模型与算法。在云制造平台发展的初期阶段,以服务需求者的视角分析云制造服务资源组合优化管理问题,通过团购模式研究了资源组合优化模型与算法,模型中考虑团购定价、团购信任度等关键影响因素,对云制造资源组合优化进行综合决策;设计改进的遗传算法进行模型求解,进一步对团购模式下云制造服务资源组合模型进行仿真分析。通过不同规模问题的仿真实验验证了模型与算法的有效性和可行性,仿真结果表明,在团购规模逐渐增大的情况下,团购模式比个体模式更具有成本优势。

关键词: 团购, 云制造, 服务资源, 遗传算法, 定价策略

Abstract:

A could manufacturing service resource optimization under group buying mode was proposed in order to reduce service costs of demanders. In the early stage of cloud manufacturing platform, service resource optimization management was analyzed from perspective of service demanders, so as to reduce their service costs of cloud manufacturing platform as a whole. The group buying mode was introduced into the resource combination optimization model, and the key impact factors including pricing and trust level in group buying were considered. Under group buying circumstances, comprehensive decision of cloud manufacturing resource optimization was studied, and an improved genetic algorithm was designed for solving this model. Furthermore, the simulation experiments of different scale problems were also given to verify the validity and feasibility of the proposed model and the improved algorithm. The simulation results show that, when group buying scale increases, group buying mode has more cost advantages.

Key words: group buying, cloud manufacturing, service resource, genetic algorithm, pricing strategy

中图分类号: