[1] ZHANG J, FENG Z, CHU F. Rolling bearing fault feature with time-the wavelet energy spectrum extraction method [J]. Journal of Mechanical Engineering, 2011,47(17):33-49.(张进,冯志鹏,褚福磊.滚动轴承故障特征的时间-小波能量谱提取方法[J].机械工程学报,2011,47(17):44-49.) [2] YANG J, ZHOU P. Empirical mode decomposition and Laplace wavelet in the application of locomotive diesel engine gear fault diagnosis [J]. Journal of Mechanical Engineering, 2011,47(7):109-115.(杨江天,周培钰.经验模态分解和Laplace 小波在机车柴油机齿轮系故障诊断中的应用[J].机械工程学报,2011,47(7):109-115.) [3] HE T, LIN Y, HAO P, et al. Local mean decomposition in the application of gear fault diagnosis research [J]. Vibration and Shock, 2011,30(6):196-201.(何田,林意洲,郝普刚,等.局部均值分解在齿轮故障诊断中的应用研究[J]. 振动与冲击,2011,30(6):196-201.) [4] SU W, WANG F, ZHU H, et al. Feature extraction of rolling element bearing fault using wavelet packet sample entropy [J]. Journal of Vibration, Measurement and Diagnosis, 2011,31(2):162-166.(苏文胜,王奉涛,朱泓,等.基于小波包样本熵的滚动轴承故障特征提取[J].振动、测试与诊断,2011,31(2):162-166.) [5] RUAN Q, RUAN Y. Digtal image processing [M]. Beijing: Publishing House of Electronics Industry, 2011:138-140.(阮秋琦,阮宇智.数字图像处理[M].北京:电子工业出版社,2011:138-140.) [6] AN J, TIAN B, SUN Y, et al. An algorithm for direct sequence spread spectrum signal detection based on intrinsic time-scale decomposition [J]. Journal of Electronics and Information Technology, 2010,32(5);1178-182.(安金坤,田斌,孙永军,等. 一种基于ITD算法的直扩信号检测算法[J].电子与信息学报,2010,32(5):1178-182.) [7] LIAO X, WAN Z, XIONG X. Based on ELMD and LS-SVM rolling bearing fault diagnosis method [J]. Journal of Chemical Industry, 2013,64(12):4667-4673.(廖星智,万舟,熊新.基于ELMD与LS-SVM的滚动轴承故障诊断方法[J].化工学报,2013,64(12):4667-4673.) [8] CHENG J, MA X, YANG Y. Rolling bearing fault diagnosis method based on permutation entropy and VPMCD [J]. Journal of Vibration and Shock, 2014,33(11):119-123.(程军圣,马兴伟,杨宇.基于排列熵和VPMCD的滚动轴承故障诊断方法[J].振动与冲击,2014,33(11):119-123.) [9] CHENG J, MA X, YANG Y. Gear fault diagnosis method based on VPMCD and EMD [J]. Journal of Vibration and Shock, 2013,32(20):9-13.(程军圣,马兴伟,杨宇.基于VPMCD和EMD的齿轮故障诊断方法[J].振动与冲击,2013,32(20):9-13.) [10] ZHANG K, CHENG J, YANG Y. Local mean decomposition method and its application in the rolling bearing fault diagnosis [J]. The Chinese Mechanical Engineering, 2009,20(22):2712-2717.(张亢,程军圣,杨宇.局部均值分解方法及其在滚动轴承故障诊断中的应用[J].中国机械工程,2009,20(22):2712-2717.) [11] ZHANG K, CHENG J, YANG Y. Based on local mean decomposition of rational spline function method and its application [J]. Journal of Vibration Engineering, 2011,24(1):96-103.(张亢,程军圣,杨宇.基于有理样条函数的局部均值分解方法及其应用[J].振动工程学报,2011,24(1):96-103.) [12] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005,2(5):443-454. [13] CHENG J, LUO S, YANG B, et al. LMD energy torque and VPMCD in the application of the bearing fault intelligent diagnosis [J]. Journal of Vibration Engineering, 2013,26(5):753-754.(程军圣,罗颂荣,杨斌, 等.LMD能量矩和变量预测模型模式识别在轴承故障智能诊断中的应用[J].振动工程学报,2013,26(5):753-754.) [14] RAGHURAJ R, LAKSHMINARAYANAN S. Variable predictive models-a new multivariate classification approach for pattern recognition applications [J]. Patten Recognition, 2009,42(1):6-16. [15] ZHONG B, HUANG R. Mechanical fault diagnosis [M]. Beijing: China Machine Press, 2006:43-146.(钟秉林,黄仁. 机械故障诊断学[M]. 北京:机械工业出版社,2006:43-146.) [16] WEN X. Pattern recognition and condition monitoring [M]. Beijing: Science Press, 2007:55-197.(温熙森. 模式识别与状态监控[M]. 北京:科学出版社,2007:55-197.) |