《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (4): 1036-1043.DOI: 10.11772/j.issn.1001-9081.2021071266
所属专题: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• CCF第36届中国计算机应用大会 (CCF NCCA 2021) • 上一篇 下一篇
收稿日期:
2021-07-16
修回日期:
2021-09-24
接受日期:
2021-09-30
发布日期:
2021-09-24
出版日期:
2022-04-10
通讯作者:
季长清
作者简介:
汪祖民(1975—),男,河南信阳人,教授,博士,CCF会员,主要研究方向:智慧城市、物联网基金资助:
Zumin WANG1, Zhihao ZHANG1, Jing QIN2, Changqing JI1,3()
Received:
2021-07-16
Revised:
2021-09-24
Accepted:
2021-09-30
Online:
2021-09-24
Published:
2022-04-10
Contact:
Changqing JI
About author:
WANG Zumin, born in 1975, Ph. D., professor. His research interests include smart city, Internet of things.Supported by:
摘要:
针对传统机械故障诊断方法难以解决人工提取不确定性的问题,提出了大量深度学习的特征提取方法,极大地推动了机械故障诊断的发展。作为深度学习的典型代表,卷积神经网络(CNN)在图像分类、目标检测、图像语义分割等领域都取得了重大的发展,在机械故障诊断领域也有大量文献发表。为了进一步了解利用CNN的方法进行机械故障诊断的问题,首先简单介绍了CNN的相关理论,然后从数据输入类型、迁移学习、预测等方面对CNN在机械故障诊断中的应用进行了归纳总结,最后展望了CNN及其在机械故障诊断应用中的发展方向。
中图分类号:
汪祖民, 张志豪, 秦静, 季长清. 基于卷积神经网络的机械故障诊断技术综述[J]. 计算机应用, 2022, 42(4): 1036-1043.
Zumin WANG, Zhihao ZHANG, Jing QIN, Changqing JI. Review of mechanical fault diagnosis technology based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4): 1036-1043.
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于DCNN的诊断模型[ | 行星齿轮箱试验台 | C1-C2-P3-C4-P5-C6-P7-C8-P9-C10-P11-F12 | 9 | 90.00 |
层次式自适应DCNN[ | 凯斯西储大学数据集 | C1-P2-C3-P4-C5-P6-F7-F8 | 10 | 97.90 |
基于CNN和SVM的混合技术[ | 实验平台获得的机车轴承数据 | C1-P2-C3-P4-C5-P6-F7-F8 | 4 | 99.67 |
实验平台获得的汽车变速器 变速箱数据 | 4 | 100.00 | ||
多源原始振动信号的CNN[ | 大庆天然气公司南段1号机组的 往复式压缩机振动实验数据 | C1-P2-C3-P4-C5-P6-C7-C8-P9-C10-P11- F12-F13-F14 | 4 | 90.20 |
瓶颈层优化CNN[ | 风力发电试验台 | B1-P2-C3-P4-C5-P6-C7-P8-C9-F10 B(瓶颈层) | 6 | 99.47 |
离心泵试验台 | 4 | 99.32 | ||
DCNN的视觉缺陷检测方法[ | 工业光学检查的弱监督学习 示例的数据集 | C1-C2-P3-C4-C5-C6-P7-C8-C9-F10-F11-F12 | 12 | 97.19 |
基于CNN的两阶段AFRS[ | 货运列车运行故障检测系统 | C1-P2-C3-P4-C5-C6-C7-F8-F9 | 4 | 97.50 |
C1-C2-P3-C4-P5-C6-P7-C8-P9-F10-F11 | ||||
基于CNN的滚动轴承诊断模型[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5 | 4 | 97.74 |
免疫自适应DCNN[ | 凯斯西储大学轴承数据集 | C1-P2-C3-P4-C5-P6-C7-F8 | 4 | 99.00 |
基于二维CNN的状态监测特征 学习模型[ | 测试设置的轴承数据集 | C1-F2 | 4 | 93.61 |
基于DCNN和RF集成学习[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5 | 10 | 99.73 |
BaoSteel MRO管理系统轴承数据 | 4 | 97.38 |
表1 基于二维卷积神经网络的故障诊断模型
Tab. 1 Fault diagnosis models based on two-dimensional convolutional neural network
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于DCNN的诊断模型[ | 行星齿轮箱试验台 | C1-C2-P3-C4-P5-C6-P7-C8-P9-C10-P11-F12 | 9 | 90.00 |
层次式自适应DCNN[ | 凯斯西储大学数据集 | C1-P2-C3-P4-C5-P6-F7-F8 | 10 | 97.90 |
基于CNN和SVM的混合技术[ | 实验平台获得的机车轴承数据 | C1-P2-C3-P4-C5-P6-F7-F8 | 4 | 99.67 |
实验平台获得的汽车变速器 变速箱数据 | 4 | 100.00 | ||
多源原始振动信号的CNN[ | 大庆天然气公司南段1号机组的 往复式压缩机振动实验数据 | C1-P2-C3-P4-C5-P6-C7-C8-P9-C10-P11- F12-F13-F14 | 4 | 90.20 |
瓶颈层优化CNN[ | 风力发电试验台 | B1-P2-C3-P4-C5-P6-C7-P8-C9-F10 B(瓶颈层) | 6 | 99.47 |
离心泵试验台 | 4 | 99.32 | ||
DCNN的视觉缺陷检测方法[ | 工业光学检查的弱监督学习 示例的数据集 | C1-C2-P3-C4-C5-C6-P7-C8-C9-F10-F11-F12 | 12 | 97.19 |
基于CNN的两阶段AFRS[ | 货运列车运行故障检测系统 | C1-P2-C3-P4-C5-C6-C7-F8-F9 | 4 | 97.50 |
C1-C2-P3-C4-P5-C6-P7-C8-P9-F10-F11 | ||||
基于CNN的滚动轴承诊断模型[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5 | 4 | 97.74 |
免疫自适应DCNN[ | 凯斯西储大学轴承数据集 | C1-P2-C3-P4-C5-P6-C7-F8 | 4 | 99.00 |
基于二维CNN的状态监测特征 学习模型[ | 测试设置的轴承数据集 | C1-F2 | 4 | 93.61 |
基于DCNN和RF集成学习[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5 | 10 | 99.73 |
BaoSteel MRO管理系统轴承数据 | 4 | 97.38 |
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于CNN的故障诊断模型[ | PHM 2009齿轮箱挑战数据 | C1-P2-F3 | 6 | 99.33 |
行星齿轮箱试验台 | 7 | 98.67 | ||
紧凑自适应一维CNN[ | 智能维护系统轴承数据集 | C1-C2-C3-M4-M5M(MLP层) | 4 | 93.90 |
凯斯西储大学轴承数据中心 | 6 | 93.20 | ||
改进的多尺度级联CNN[ | 凯斯西储大学轴承数据中心 | MC1-C2-P3-C4-P5-C6-P7-F8MC (多尺度层) | 4 | 97.00 |
苏州大学轴承故障模拟试验台 | 6 | 83.20 | ||
具有扩大感受野的增强CNN[ | Drivetrain Diagnostics Simulator(DDS) 试验台 | C1-FC2-P3-FC4-P5-F6FC (融合扩张卷积层) | 8 | 97.73 |
特征继承层次CNN[ | 160 kW两极感应电动机的数据集 | C1-P2-C3-P4-C5-P6-F7 | 4 | 99.70 |
C1-P2-C3-P4-F5 | 60.00 | |||
基于CNN和LSTM[ | 凯斯西储大学轴承数据中心 | C1-P2-F3 | 10 | 99.00 |
自适应重叠CNN[ | 凯斯西储大学轴承数据中心 | C1-P2-F3 | 10 | 99.64 |
专门设计的实验台上收集的齿轮箱 实验数据集 | 6 | 99.86 | ||
基于CNN和带有注意机制的 双向LSTM网络[ | 刀具磨损状态的实时监控实验装置 | C1-C2-P3-B4-F5-F6B (双向长短期记忆层) | 4 | 96.97 |
表2 基于一维卷积神经网络的故障诊断模型
Tab. 2 Fault diagnosis models based on one-dimensional convolutional neural network
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于CNN的故障诊断模型[ | PHM 2009齿轮箱挑战数据 | C1-P2-F3 | 6 | 99.33 |
行星齿轮箱试验台 | 7 | 98.67 | ||
紧凑自适应一维CNN[ | 智能维护系统轴承数据集 | C1-C2-C3-M4-M5M(MLP层) | 4 | 93.90 |
凯斯西储大学轴承数据中心 | 6 | 93.20 | ||
改进的多尺度级联CNN[ | 凯斯西储大学轴承数据中心 | MC1-C2-P3-C4-P5-C6-P7-F8MC (多尺度层) | 4 | 97.00 |
苏州大学轴承故障模拟试验台 | 6 | 83.20 | ||
具有扩大感受野的增强CNN[ | Drivetrain Diagnostics Simulator(DDS) 试验台 | C1-FC2-P3-FC4-P5-F6FC (融合扩张卷积层) | 8 | 97.73 |
特征继承层次CNN[ | 160 kW两极感应电动机的数据集 | C1-P2-C3-P4-C5-P6-F7 | 4 | 99.70 |
C1-P2-C3-P4-F5 | 60.00 | |||
基于CNN和LSTM[ | 凯斯西储大学轴承数据中心 | C1-P2-F3 | 10 | 99.00 |
自适应重叠CNN[ | 凯斯西储大学轴承数据中心 | C1-P2-F3 | 10 | 99.64 |
专门设计的实验台上收集的齿轮箱 实验数据集 | 6 | 99.86 | ||
基于CNN和带有注意机制的 双向LSTM网络[ | 刀具磨损状态的实时监控实验装置 | C1-C2-P3-B4-F5-F6B (双向长短期记忆层) | 4 | 96.97 |
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于前训练CNN的参数转移 学习方法[ | 自行设计的测试台 | C1-P2-C3-P4-F5-F6 | 12 | 94.67 |
基于DCNN的TL方法[ | 具有可更换齿轮的基准两级变速箱 | C1-P2-C3-P4-C5-P6-C7-P8-C9- P10-F11-F12-F13 | 9 | 94.90 |
基于聚类分析的故障诊断 方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-C9- P10-F11 | 10 | 96.00 |
实验室模拟的轴承故障数据集 | 5 | 97.50 | ||
基于多层域自适应的轴承 故障诊断方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-F9 | 4 | 99.76 |
基于特征的转移神经网络[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5-F6-F7 | 4 | 74.81 |
实验台收集实验室齿轮箱轴承的数据集 | 4 | |||
机车轴承数据集 | 4 | |||
三重损失引导的对抗域 适配方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-F9-F10 | 10 | 98.48 |
Paderborn数据集 | 8 | 99.46 | ||
基于CNN和SVM的TL 方法[ | Original Engine ManufactWurer(OEM)提供的 维护报告和样本车队的Customer Notification Report(CNR) | C1-C2-P3-F4-F5-F6 | 4 | 93.44 |
负相关集成TL方法[ | Paderborn University 提供的轴承数据集 | ResNet-50 | 3 | 98.73 |
表3 基于迁移学习的故障诊断模型
Tab. 3 Fault diagnosis models based on transfer learning
诊断模型 | 数据来源 | CNN结构 | 故障类别数 | 准确率/% |
---|---|---|---|---|
基于前训练CNN的参数转移 学习方法[ | 自行设计的测试台 | C1-P2-C3-P4-F5-F6 | 12 | 94.67 |
基于DCNN的TL方法[ | 具有可更换齿轮的基准两级变速箱 | C1-P2-C3-P4-C5-P6-C7-P8-C9- P10-F11-F12-F13 | 9 | 94.90 |
基于聚类分析的故障诊断 方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-C9- P10-F11 | 10 | 96.00 |
实验室模拟的轴承故障数据集 | 5 | 97.50 | ||
基于多层域自适应的轴承 故障诊断方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-F9 | 4 | 99.76 |
基于特征的转移神经网络[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-F5-F6-F7 | 4 | 74.81 |
实验台收集实验室齿轮箱轴承的数据集 | 4 | |||
机车轴承数据集 | 4 | |||
三重损失引导的对抗域 适配方法[ | 凯斯西储大学轴承数据中心 | C1-P2-C3-P4-C5-P6-C7-P8-F9-F10 | 10 | 98.48 |
Paderborn数据集 | 8 | 99.46 | ||
基于CNN和SVM的TL 方法[ | Original Engine ManufactWurer(OEM)提供的 维护报告和样本车队的Customer Notification Report(CNR) | C1-C2-P3-F4-F5-F6 | 4 | 93.44 |
负相关集成TL方法[ | Paderborn University 提供的轴承数据集 | ResNet-50 | 3 | 98.73 |
诊断模型 | 数据来源 | CNN结构 | 均方根误差 |
---|---|---|---|
深度可分离卷积网络[ | C-MAPSS数据集 | C1-P2-B3-P4-F5(B Block层) | 6.670 |
多变量时间序列构造 二维数据矩阵训练CNN[ | PHM 2008数据挑战数据集 | C1-P2-C3-P4-F5 | 18.448 |
混合深度网络框架[ | C-MAPSS数据集 | C1-P2-C3-P4-C5-F6 | 12.220 |
基于DCNN的特征提取[ | C-MAPSS数据集 | C1-C2-C3-C4-C5-F6-F7 | 12.610 |
深度残差CNN[ | C-MAPSS数据集 | C1-R2-R3-F4-F5 (R RBB块) | 12.380 |
DCNN[ | PRONOSTIA平台 | P1-C2-C3-C4-C5 | 16.200 |
基于CNN和和LSTM的 混合深度预测模型[ | 辛辛那提大学智能维护系统 | C1-F2-D3-F4(D DLSTM层) | 2.340 |
C-MAPSS涡轮机数据集 | C1-P2-L3-F4(L LSTM) | 16.127 | |
胶囊神经网络[ | C-MAPSS涡轮机数据集 | C1-C2-M3-M4 M(多层感知器层) | 16.300 |
表4 剩余寿命预测的卷积神经网络模型
Tab. 4 Convolutional neural network model for remaining life prediction
诊断模型 | 数据来源 | CNN结构 | 均方根误差 |
---|---|---|---|
深度可分离卷积网络[ | C-MAPSS数据集 | C1-P2-B3-P4-F5(B Block层) | 6.670 |
多变量时间序列构造 二维数据矩阵训练CNN[ | PHM 2008数据挑战数据集 | C1-P2-C3-P4-F5 | 18.448 |
混合深度网络框架[ | C-MAPSS数据集 | C1-P2-C3-P4-C5-F6 | 12.220 |
基于DCNN的特征提取[ | C-MAPSS数据集 | C1-C2-C3-C4-C5-F6-F7 | 12.610 |
深度残差CNN[ | C-MAPSS数据集 | C1-R2-R3-F4-F5 (R RBB块) | 12.380 |
DCNN[ | PRONOSTIA平台 | P1-C2-C3-C4-C5 | 16.200 |
基于CNN和和LSTM的 混合深度预测模型[ | 辛辛那提大学智能维护系统 | C1-F2-D3-F4(D DLSTM层) | 2.340 |
C-MAPSS涡轮机数据集 | C1-P2-L3-F4(L LSTM) | 16.127 | |
胶囊神经网络[ | C-MAPSS涡轮机数据集 | C1-C2-M3-M4 M(多层感知器层) | 16.300 |
1 | JIAO J Y, ZHAO M, LIN J, et al. Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings[J]. Reliability Engineering & System Safety, 2019, 184: 41-54. 10.1016/j.ress.2018.02.010 |
2 | 雷亚国,何正嘉. 混合智能故障诊断与预示技术的应用进展[J]. 振动与冲击, 2011, 30(9): 129-135. 10.3969/j.issn.1000-3835.2011.09.028 |
LEI Y G, HE Z J. Advances in applications of hybrid intelligent fault diagnosis and prognosis technique[J]. Journal of Vibration and Shock, 2011, 30(9): 129-135. 10.3969/j.issn.1000-3835.2011.09.028 | |
3 | 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. 10.3901/JME.2015.21.049 |
LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data [J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56. 10.3901/JME.2015.21.049 | |
4 | SHAO H D, CHEN J S, JIANG H K, et al. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J]. Knowledge-Based Systems, 2020, 188: 105022. 10.1016/j.knosys.2019.105022 |
5 | RAUBER T W, BOLDT F A, VAREJAO F M. Heterogeneous feature models and feature selection applied to bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2014, 62(1): 637-646. 10.1109/tie.2014.2327589 |
6 | CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable Energy, 2016, 90: 501-512. 10.1016/j.renene.2016.01.036 |
7 | WIJAYASEKARA D, LINDA O, MANIC M, et al. FN-DFE: Fuzzy-neural data fusion engine for enhanced resilient state-awareness of hybrid energy systems[J]. IEEE Transactions on Cybernetics, 2014, 44(11): 2065-2075. 10.1109/tcyb.2014.2323891 |
8 | GUNERKAR R S, JALAN A K, BELGAMWAR S U. Fault diagnosis of rolling element bearing based on artificial neural network[J]. Journal of Mechanical Science and Technology, 2019, 33(2): 505-511. 10.1007/s12206-019-0103-x |
9 | KUMAR T P, SAIMURUGAN M, HARAN R B H, et al. A multi-sensor information fusion for fault diagnosis of a gearbox utilizing discrete wavelet features[J]. Measurement Science and Technology, 2019, 30(8): 085101. 10.1088/1361-6501/ab0737 |
10 | 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358. 10.13195/j.kzyjc.2016.1625 |
REN H, QU J F, CHAI Y, et al. Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32(8): 1345-1358. 10.13195/j.kzyjc.2016.1625 | |
11 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the Institute of Electrical and Electronics Engineers, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
12 | WU S T, ZHONG S H, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications, 2018, 77: 10437-10453. 10.1007/s11042-017-4440-4 |
13 | KRIZHEVSK A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
14 | 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. 10.19650/j.cnki.cjsi.J1803286 |
QU J L, YU L, YUAN T, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143. 10.19650/j.cnki.cjsi.J1803286 | |
15 | YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96(Part A): 1-15. 10.1016/j.sigpro.2013.04.015 |
16 | CHEN H P, HU N Q, CHENG Z, et al. A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes[J]. Measurement, 2019, 146: 268-278. 10.1016/j.measurement.2019.04.093 |
17 | GUO X J, CHEN L, SHEN C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502. 10.1016/j.measurement.2016.07.054 |
18 | YOU W, SHEN C Q, GUO X J, et al. A hybrid technique based on convolutional neural network and support vector regression for intelligent diagnosis of rotating machinery[J]. Advances in Mechanical Engineering, 2017, 9(6): 1-17. 10.1177/1687814017704146 |
19 | YANG H B, ZHANG J A, CHEN L L, et al. Fault diagnosis of reciprocating compressor based on convolutional neural networks with multisource raw vibration signals[J]. Mathematical Problems in Engineering, 2019, 2019: 6921975.1-6921975.7. 10.1155/2019/6921975 |
20 | WANG H Q, LI S, SONG L Y, et al. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J]. Computers in Industry, 2019, 105: 182-190. 10.1016/j.compind.2018.12.013 |
21 | WEIMER D, SCHOLZ-REITER B, SHPITALNI M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection[J]. CIRP Annals, 2016, 65(1): 417-420. 10.1016/j.cirp.2016.04.072 |
22 | SUN J H, XIAO Z W, XIE Y X. Automatic multi-fault recognition in TFDS based on convolutional neural network[J]. Neurocomputing, 2017, 222: 127-136. 10.1016/j.neucom.2016.10.018 |
23 | HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50. 10.1016/j.cogsys.2018.03.002 |
24 | TIAN Y, LIU X. A deep adaptive learning method for rolling bearing fault diagnosis using immunity[J]. Tsinghua Science and Technology, 2019, 24(6): 750-762. 10.26599/tst.2018.9010144 |
25 | JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345. 10.1016/j.jsv.2016.05.027 |
26 | XU G, LIU M, JIANG Z, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors(Basel), 2019, 19(5): 1088. 10.3390/s19051088 |
27 | JING L, ZHAO M, LI P, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10. 10.1016/j.measurement.2017.07.017 |
28 | EREN L, INCE T, KIRANVAZ S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2): 179-189. 10.1007/s11265-018-1378-3 |
29 | HUANG W, CHENG J, YANG Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92. 10.1016/j.neucom.2019.05.052 |
30 | HAN Y, TANG B, DENG L. An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J]. Computers in Industry, 2019, 107: 50-58. 10.1016/j.compind.2019.01.012 |
31 | PARK C H, KIM H, LEE J, et al. A Feature Inherited Hierarchical Convolutional Neural Network (FI-HCNN) for motor fault severity estimation using stator current signals[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8: 1253-1266. 10.1007/s40684-020-00279-3 |
32 | PAN H, HE X, TANG S, et al. An improved bearing fault diagnosis method using one-dimensional CNN and LSTM[J]. Journal of Mechanical Engineering, 2018, 64(7-8): 443-452. 10.5545/sv-jme.2018.5249 |
33 | QIAN W, LI S, WANG J, et al. An intelligent fault diagnosis framework for raw vibration signals: adaptive overlapping convolutional neural network[J]. Measurement Science and Technology, 2018, 29(9): 095009. 10.1088/1361-6501/aad101 |
34 | CHEN Q, XIE Q, YUAN Q, et al. Research on a real-time monitoring method for the wear state of a tool based on a convolutional bidirectional LSTM model[J]. Symmetry, 2019, 11(10): 1233. 10.3390/sym11101233 |
35 | HASAN M J, ISLAM M M M, KIM J M. Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions[J]. Measurement, 2019, 138: 620-631. 10.1016/j.measurement.2019.02.075 |
36 | CAO P, ZHANG S, TANG J. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J]. IEEE Access, 2018, 6: 26241-26253. 10.1109/access.2018.2837621 |
37 | WU Y, ZHAO R, JIN W, et al. Rolling bearing fault diagnosis using a deep convolutional autoencoding network and improved Gustafson⁃Kessel clustering[J]. Shock and Vibration, 2020, 2020: 8846589.1-8846589.17. 10.1155/2020/8846589 |
38 | LI X, ZHANG W, DING Q, et al. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing, 2019, 157: 180-197. 10.1016/j.sigpro.2018.12.005 |
39 | YANG B, LEI Y, JIA F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706. 10.1016/j.ymssp.2018.12.051 |
40 | WANG X, LIU F. Triplet loss guided adversarial domain adaptation for bearing fault diagnosis[J]. Sensors(Basel), 2020, 20(1): 320. 10.3390/s20010320 |
41 | ZHONG S S, FU S, LIN L. A novel gas turbine fault diagnosis method based on transfer learning with CNN[J]. Measurement, 2019, 137: 435-453. 10.1016/j.measurement.2019.01.022 |
42 | WEN L, GAO L, DONG Y, et al. A negative correlation ensemble transfer learning method for fault diagnosis based on convolutional neural network[J]. Mathematical Biosciences Engineering, 2019, 16(5): 3311-3330. 10.3934/mbe.2019165 |
43 | WANG B, LEI Y, LI N, et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing, 2019, 134: 106330. 10.1016/j.ymssp.2019.106330 |
44 | BABU G S, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]// Proceedings of the 2016 International conference on Database Systems for Advanced Applications. Cham: Springer, 2016: 214-228. 10.1007/978-3-319-32025-0_14 |
45 | AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108: 186-196. 10.1016/j.compind.2019.02.004 |
46 | LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11. 10.1016/j.ress.2017.11.021 |
47 | WEN L, DONG Y, GAO L. A new ensemble residual convolutional neural network for remaining useful life estimation[J]. Mathematical Biosciences Engineering, 2019, 16(2): 862-880. 10.3934/mbe.2019040 |
48 | LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218. 10.1016/j.ress.2018.11.011 |
49 | WANG Z, MA H, CHEN H, et al. Performance degradation assessment of rolling bearing based on convolutional neural network and deep long-short term memory network[J]. International Journal of Production Research, 2020, 58(13): 3931-3943. 10.1080/00207543.2019.1636325 |
50 | KONG Z, CUI Y, XIA Z, et al. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, 9(19): 4156. 10.3390/app9194156 |
51 | PALAZUELOS R T A, DROGUETT E L, PASCUAL R. A novel deep capsule neural network for remaining useful life estimation[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234(1): 151-167. 10.1177/1748006x19866546 |
52 | MAO W, HE L, YAN Y, et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems and Signal Processing, 2017, 83: 450-473. 10.1016/j.ymssp.2016.06.024 |
53 | BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259. 10.1016/j.neunet.2018.07.011 |
54 | JIA F, LEI Y, LU N, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems and Signal Processing, 2018, 110: 349-367. 10.1016/j.ymssp.2018.03.025 |
55 | JING L, WANG T, ZHAO M, et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors(Basel), 2017, 17(2): 414. 10.3390/s17020414 |
56 | LIU Y, YAN X S, ZHANG C A, et al. An ensemble convolutional neural networks for bearing fault diagnosis using multi-sensor data[J]. Sensors, 2019, 19(23): 5300. 10.3390/s19235300 |
57 | ZHENG J, PAN H, CHENG J. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines[J]. Mechanical Systems and Signal Processing, 2017, 85: 746-759. 10.1016/j.ymssp.2016.09.010 |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[3] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[4] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[5] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[6] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[7] | 杨鑫, 陈雪妮, 吴春江, 周世杰. 结合变种残差模型和Transformer的城市公路短时交通流预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2947-2951. |
[8] | 肖海林, 黄天义, 代秋香, 张跃军, 张中山. 基于轨迹预测的安全强化学习自动变道决策方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2958-2963. |
[9] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[10] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[11] | 范黎林, 曹富康, 王琬婷, 杨凯, 宋钊瑜. 基于需求模式自适应匹配的间歇性需求预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2747-2755. |
[12] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[13] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[14] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[15] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||