《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (12): 3626-3631.DOI: 10.11772/j.issn.1001-9081.2021060974
所属专题: 第十八届中国机器学习会议(CCML 2021)
• 第十八届中国机器学习会议(CCML 2021) • 上一篇 下一篇
Xueying PENG, Yongquan JIANG(), Yan YANG
摘要:
深度学习方法被广泛应用于轴承故障诊断,但在实际工程应用中,轴承服役期间的真实服役故障数据不易收集,缺乏数据标签,难以进行充分的训练。针对轴承服役故障诊断困难的问题,提出了一种基于图卷积网络(GCN)的迁移学习轴承服役故障诊断模型。该模型从数据充足的人工模拟损伤故障数据中学习故障知识,并迁移到真实的服役故障上,以提高服役故障的诊断准确率。具体来说,通过将人工模拟损伤故障数据和服役故障数据的原始振动信号由小波变换转换为同时具有时间和频率信息的时频图,并将得到的时频图输入到图卷积层中进行学习,从而有效地提取源域和目标域的故障特征表示;然后计算源域和目标域的数据分布之间的Wasserstein距离来度量两个数据分布之间的差异,通过最小化数据分布差异,构建了一个能诊断轴承服役故障的故障诊断模型。在不同的轴承故障数据集和不同工作条件下设计了多种不同的任务进行实验,实验结果表明,该模型具有诊断轴承服役故障的能力,同时也能从一个工作条件迁移到另一工作条件,在不同组件类型和不同工作条件之间进行故障诊断。
中图分类号: