计算机应用 ›› 2015, Vol. 35 ›› Issue (11): 3247-3251.DOI: 10.11772/j.issn.1001-9081.2015.11.3247

• 人工智能 • 上一篇    下一篇

融合评论分析和隐语义模型的视频推荐算法

尹路通1, 于炯1,2, 鲁亮2, 英昌甜2, 郭刚1   

  1. 1. 新疆大学 软件学院, 乌鲁木齐 830008;
    2. 新疆大学 信息科学与工程学院, 乌鲁木齐 830046
  • 收稿日期:2015-05-23 修回日期:2015-07-10 发布日期:2015-11-13
  • 通讯作者: 于炯(1964-),男,北京人,教授,博士生导师,博士,CCF会员,主要研究方向:网络安全、网格与分布式计算.
  • 作者简介:尹路通(1992-),男,河南驻马店人,硕士研究生,主要研究方向:大数据与数据挖掘、推荐系统; 鲁亮(1989-),男,新疆乌鲁木齐人,博士研究生,CCF会员,主要研究方向:云计算、分布式计算; 英昌甜(1989-),女,新疆乌鲁木齐人,博士研究生,CCF会员,主要研究方向:云计算与存储节能; 郭刚(1990-),男,山东枣庄人,硕士研究生,主要研究方向:大数据存储、数据迁移.
  • 基金资助:
    国家自然科学基金资助项目(61462079,61363083,61262088).

Video recommendation algorithm fusing comment analysis and latent factor model

YIN Lutong1, YU Jiong1,2, LU Liang2, YING Changtian2, GUO Gang1   

  1. 1. School of Software, Xinjiang University, Urumqi Xinjiang 830008, China;
    2. School of Information Science and Engineering, Xinjiang University, Urumqi Xinjiang 830046, China
  • Received:2015-05-23 Revised:2015-07-10 Published:2015-11-13

摘要: 针对网络视频元数据信息缺失严重和多媒体数据本身特征难以提取等问题,提出了融合评论分析和隐语义模型的网络视频推荐算法.从视频评论入手,通过分析用户对不同视频的评论内容以判断其情感倾向并加以量化,继而构建用户对项目的虚拟评分矩阵,弥补了显式评分数据稀疏性问题.考虑到网络视频的多元性和高维度特性,为了深度挖掘用户对网络视频的潜在兴趣,针对虚拟评分矩阵采用隐语义模型(LFM)对网络视频分类,在传统的用户—项目二元推荐系统基础之上添加虚拟类目信息以进一步发掘用户—类目—项目关联关系.实验在多重标准下进行,对YouTube评论集的实验表明,所提推荐方法获得了较高的推荐精度.

关键词: 推荐系统, 网络视频, 评论分析, 隐语义模型, 情感词

Abstract: Video recommender is still confronted with many challenges such as lack of meta-data of online videos, and also it's difficult to abstract features on multi-media data directly. Therefore an Video Recommendation algorithm Fusing Comment analysis and Latent factor model (VRFCL) was proposed. Starting with video comments, it firstly analyzed the sentiment orientation of user comments on multiple videos, and resulted with some numeric values representing user's attitude towards corresponding video. Then it constructed a virtual rating matrix based on numeric values calculated before, which made up for data sparsity to some extent. Taking diversity and high dimensionality features of online video into consideration, in order to dig deeper about user's latent interest into online videos, it adapted Latent Factor Model (LFM) to categorize online videos. LFM enables us to add latent category feature to the basis of traditional recommendation system which comprised of dual user-item relationship. A series of experiments on YouTube review data were carried to prove that VRFCL algorithm achieves great effectiveness.

Key words: recommendation algorithm, online video, comment analysis, latent factor model, sentiment orientation

中图分类号: