计算机应用 ›› 2016, Vol. 36 ›› Issue (5): 1262-1266.DOI: 10.11772/j.issn.1001-9081.2016.05.1262

• 人工智能 • 上一篇    下一篇

兼顾特征级和决策级融合的场景分类

何刚1,2, 霍宏1,2, 方涛1,2   

  1. 1. 上海交通大学 自动化系, 上海 200240;
    2. 系统控制与信息处理教育部重点实验室, 上海 200240
  • 收稿日期:2015-10-21 修回日期:2015-12-14 出版日期:2016-05-10 发布日期:2016-05-09
  • 通讯作者: 霍宏
  • 作者简介:何刚(1991-),男,四川南充人,硕士研究生,主要研究方向:模式识别、场景分类;霍宏(1972-),女,辽宁本溪人,讲师,博士,主要研究方向:模式识别、遥感图像理解;方涛(1965-),男,四川彭山人,教授,博士,主要研究方向:图像理解、遥感科学。
  • 基金资助:
    国家973计划项目(2012CB719903);国家自然科学基金委创新研究群体资助项目(61221003);国家自然科学基金青年科学基金资助项目(41101386)。

Scene classification based on feature-level and decision-level fusion

HE Gang1,2, HUO Hong1,2, FANG Tao1,2   

  1. 1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China
  • Received:2015-10-21 Revised:2015-12-14 Online:2016-05-10 Published:2016-05-09
  • Supported by:
    This work is partially supported by the National Basic Research Program (973 Program) of China (2012CB719903), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61221003),and the Young Scientists Fund of the National Natural Science Foundation of China (41101386).

摘要: 针对单一特征在场景分类中精度不高的问题,借鉴信息融合的思想,提出了一种兼顾特征级融合和决策级融合的分类方法。首先,提取图像的尺度不变特征变换词包(SIFT-BoW)、Gist、局部二值模式(LBP)、Laws纹理以及颜色直方图五种特征。然后,将每种特征单独对场景进行分类得到的结果以Dezert-Smarandache理论(DSmT)推理的方式在决策级进行融合,获得决策级融合下的分类结果;同时,将五种特征串行连接实现特征级融合并进行分类,得到特征级融合下的分类结果。最后,将特征级和决策级的分类结果进行自适应的再次融合完成场景分类。在决策级融合中,为解决DSmT推理过程中基本信度赋值(BBA)构造困难的问题,提出一种利用训练样本构造后验概率矩阵来完成基本信度赋值的方法。在21类遥感数据集上进行分类实验,当训练样本和测试样本各为50幅时,分类精度达到88.61%,较单一特征中的最高精度提升了12.27个百分点,同时也高于单独进行串行连接的特征级融合或DSmT推理的决策级融合的分类精度。

关键词: 场景分类, 特征级融合, 决策级融合, Dezert-Smarandache理论推理, 基本信度赋值, 遥感影像

Abstract: Since the accuracy of single feature in scene classification is low, inspired by information fusion, a classification method combined feature-level and decision-level fusion was proposed. Firstly, Scale Invariant Feature Transform-Bag of Words (SIFT-BoW), Gist, Local Binary Patterns (LBP), Laws texture and color histogram features of image were extracted. Then, the classification results of every single feature were fused in the way of Dezert-Smarandache Theory (DSmT) to obtain the decision-level fusion result; at the same time, the five features were serially connected to generate a new feature, the new feature was used to classification to obtain the feature-level fusion result. Finally, the feature-level and decision-level fusion results were adaptively fused to finish classification. To solve the Basic Belief Assignment (BBA) problem of DSmT, a method based on posterior probability matrix was proposed. The accuracy of the proposed method on 21 classes of remote sensing images is 88.61% when training and testing samples are both 50, which is 12.27 percentage points higher than the highest accuracy of single feature. The accuracy of proposed method is also higher than that of the feature-level fusion serial connection or DSmT reasoning decision-level fusion.

Key words: scene classification, feature-level fusion, decision-level fusion, Dezert-Smarandache Theory (DSmT) reasoning, Basic Belief Assignment (BBA), remote sensing image

中图分类号: