| 1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012:1097-1105. | 
																													
																						| 2 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-02-17]..  10.5244/c.28.6 | 
																													
																						| 3 | LIN M, CHEN Q, YAN S C. Network in network[EB/OL]. (2015-04-10) [2021-02-17]..  10.1109/icicta.2014.118 | 
																													
																						| 4 | MURRAY N, PERRONNIN F. Generalized max pooling[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:2473-2480.  10.1109/cvpr.2014.317 | 
																													
																						| 5 | XIE G S, ZHANG X Y, SHU X B, et al. Task-driven feature pooling for image classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1179-1187.  10.1109/iccv.2015.140 | 
																													
																						| 6 | WU M X, CHENG G, YAO X W, et al. Performance comparison of two pooling strategies for remote sensing image scene classification[C]// Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 3037-3040.  10.1109/igarss.2019.8899877 | 
																													
																						| 7 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.  10.1109/tpami.2015.2389824 | 
																													
																						| 8 | LIN T Y, RoyCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1449-1457.  10.1109/iccv.2015.170 | 
																													
																						| 9 | LI P H, XIE J T, WANG Q L, et al. Is second-order information helpful for large-scale visual recognition?[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2089-2097.  10.1109/iccv.2017.228 | 
																													
																						| 10 | LI P H, XIE J T, WANG Q L, et al. Towards faster training of global covariance pooling networks by iterative matrix square root normalization[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:947-955.  10.1109/cvpr.2018.00105 | 
																													
																						| 11 | WANG Q L, GAO Z L, XIE J T, et al. Global gated mixture of second-order pooling for improving deep convolutional neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018:1284-1293. | 
																													
																						| 12 | KIM J H, JUN J, ZHANG B T. Bilinear attention networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018:1571-1581. | 
																													
																						| 13 | HE N J, FANG L Y, LI Y, et al. High-order self-attention network for remote sensing scene classification[C]// Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 3013-3016.  10.1109/igarss.2019.8898320 | 
																													
																						| 14 | 薛永杰,巨志勇. 注意力机制融合深度神经网络的室内场景识别方法[J]. 小型微型计算机系统, 2021, 42(5): 1022-1028.  10.3969/j.issn.1000-1220.2021.05.021 | 
																													
																						|  | XUE Y J, JU Z Y. Method for recognizing indoor scene classification based on fusion deep neural network with attention mechanism[J]. Journal of Chinese Computer Systems, 2021, 42(5):1022-1028.  10.3969/j.issn.1000-1220.2021.05.021 | 
																													
																						| 15 | 边小勇,江沛龄,赵敏,等. 基于多分支神经网络模型的弱监督细粒度图像分类方法[J]. 计算机应用, 2020, 40(5):1295-1300. | 
																													
																						|  | BIAN X Y, JIANG P L, ZHAO M, et al. Multi-branch neural network model based weakly supervised fine-grained image classification method[J]. Journal of Computer Applications, 2020, 40(5):1295-1300. | 
																													
																						| 16 | LIN T Y, MAJI S. Improved bilinear pooling with CNNs[C]// Proceedings of the 2017 British Machine Vision Conference. Durham: BMVA Press, 2017: No.117.  10.5244/c.31.117 | 
																													
																						| 17 | ZHAO Z Y, ZHANG K R, HAO X J, et al. BiRA-Net: bilinear attention net for diabetic retinopathy grading[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019:395-399.  10.1109/icip.2019.8803074 | 
																													
																						| 18 | XIA G S, HU J W, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981.  10.1109/tgrs.2017.2685945 | 
																													
																						| 19 | CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883.  10.1109/jproc.2017.2675998 | 
																													
																						| 20 | KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. (2009-04-08) [2021-02-17].. | 
																													
																						| 21 | HE K M, ZHANG X Y, REN S Q. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 22 | HE N J, FANG L Y, LI S T, et al. Skip-connected covariance network for remote sensing scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1461-1474.  10.1109/tnnls.2019.2920374 | 
																													
																						| 23 | ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]// Proceedings of the 2016 British Machine Vision Conference. Durham: BMVA Press, 2016: No.87.  10.5244/c.30.87 | 
																													
																						| 24 | ZHONG X, GONG O B, HUANG W X, et al. Squeeze and excitation wide residual networks in image classification[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 395-399.  10.1109/icip.2019.8803000 | 
																													
																						| 25 | LUAN S Z, CHEN C, ZHANG B C, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366.  10.1109/tip.2018.2835143 |