《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (5): 1431-1439.DOI: 10.11772/j.issn.1001-9081.2021030464
收稿日期:
2021-03-26
修回日期:
2021-07-16
接受日期:
2021-07-16
发布日期:
2022-06-11
出版日期:
2022-05-10
通讯作者:
冯志玺
作者简介:
屈震(2000—),男,陕西榆林人,主要研究方向:机器学习、遥感图像处理基金资助:
Zhen QU, Kunting LI, Zhixi FENG()
Received:
2021-03-26
Revised:
2021-07-16
Accepted:
2021-07-16
Online:
2022-06-11
Published:
2022-05-10
Contact:
Zhixi FENG
About author:
QU Zhen, born in 2000. His research interests include machinelearning,remote sensing image processing.Supported by:
摘要:
针对基于人工设计特征的方法不能提取高层次遥感图像信息以及以往利用VGGNet、ResNet等卷积神经网络(CNN)无法关注到遥感图像中显著分类特征的问题,提出了一种基于有效通道注意力(ECA)机制的遥感图像场景分类新模型——ECA-ResNeXt-8-SVM。为了建立高效模型,一方面,设计了嵌入ECA模块的深度特征提取网络ECA-ResNeXt-8,通过端到端的学习使网络更关注分类特征明显的通道;另一方面,利用支持向量机(SVM)代替全连接层作为已提取到的深度特征的分类器,从而进一步提高模型的分类准确率与泛化能力。该模型在实验数据集UC Merced Land-Use上的分类准确率达到95.81%,相较于使用SE-ResNeXt50与ResNeXt50网络,分别提高了6%与18%,且在分类准确率为75%时所提模型的训练时间比上述两个网络分别减少了82%与81%。实验结果表明,所提模型能够有效地减少模型的收敛时间并提升遥感图像场景分类的准确率。
中图分类号:
屈震, 李堃婷, 冯志玺. 基于有效通道注意力的遥感图像场景分类[J]. 计算机应用, 2022, 42(5): 1431-1439.
Zhen QU, Kunting LI, Zhixi FENG. Remote sensing image scene classification based on effective channel attention[J]. Journal of Computer Applications, 2022, 42(5): 1431-1439.
网络 | 平均准确率/% | 每周期平均耗时/s | 参数量/106 | t/min |
---|---|---|---|---|
VGGNet16 | 60.01±0.12 | 15.32 | 138.0 | — |
ResNet50 | 79.53±0.10 | 13.21 | 25.5 | 24.40 |
ResNeXt50 | 81.22±0.08 | 14.31 | 25.0 | 5.31 |
SE-ResNeXt50 | 90.15±0.15 | 12.15 | 35.7 | 5.76 |
ECA-ResNeXt-8 | 93.86±0.12 | 10.28 | 22.8 | 1.01 |
表1 不同网络的不同指标结果对比
Tab. 1 Result comparison of different indicators of different networks
网络 | 平均准确率/% | 每周期平均耗时/s | 参数量/106 | t/min |
---|---|---|---|---|
VGGNet16 | 60.01±0.12 | 15.32 | 138.0 | — |
ResNet50 | 79.53±0.10 | 13.21 | 25.5 | 24.40 |
ResNeXt50 | 81.22±0.08 | 14.31 | 25.0 | 5.31 |
SE-ResNeXt50 | 90.15±0.15 | 12.15 | 35.7 | 5.76 |
ECA-ResNeXt-8 | 93.86±0.12 | 10.28 | 22.8 | 1.01 |
分类器 | 准确率/% | 最后一层的平均训练时间/s |
---|---|---|
ECA-ResNeXt-8+Fully Connected | 93.86±0.12 | — |
ECA-ResNeXt-8+KNN | 89.22±0.22 | 5.5 |
ECA-ResNeXt-8+Naive Bayes | 91.93±0.10 | 10.2 |
ECA-ResNeXt-8+Random Forest | 87.52±0.15 | 11.4 |
ECA-ResNeXt-8+SVM | 95.81±0.12 | 15.8 |
表2 不同分类器下的性能对比
Tab. 2 Performance comparison under different classifiers
分类器 | 准确率/% | 最后一层的平均训练时间/s |
---|---|---|
ECA-ResNeXt-8+Fully Connected | 93.86±0.12 | — |
ECA-ResNeXt-8+KNN | 89.22±0.22 | 5.5 |
ECA-ResNeXt-8+Naive Bayes | 91.93±0.10 | 10.2 |
ECA-ResNeXt-8+Random Forest | 87.52±0.15 | 11.4 |
ECA-ResNeXt-8+SVM | 95.81±0.12 | 15.8 |
数据集 | 图片总数 | 场景类别数 | 平均准确率/% |
---|---|---|---|
UC Merced-Land-Use | 2 100 | 21 | 95.81±0.12 |
KSA | 3 250 | 13 | 93.33±0.21 |
AID | 10 000 | 30 | 94.12±0.14 |
Optimal-31 | 1 860 | 31 | 92.41±0.16 |
WHU-RS19 | 1 005 | 19 | 93.56±0.11 |
RSSCN7 | 2 800 | 7 | 94.44±0.08 |
表3 所提模型在不同数据集上的测试结果
Tab. 3 Test results of proposed model on different datasets
数据集 | 图片总数 | 场景类别数 | 平均准确率/% |
---|---|---|---|
UC Merced-Land-Use | 2 100 | 21 | 95.81±0.12 |
KSA | 3 250 | 13 | 93.33±0.21 |
AID | 10 000 | 30 | 94.12±0.14 |
Optimal-31 | 1 860 | 31 | 92.41±0.16 |
WHU-RS19 | 1 005 | 19 | 93.56±0.11 |
RSSCN7 | 2 800 | 7 | 94.44±0.08 |
1 | SINGH A. Review article digital change detection techniques using remotely-sensed data [J]. International Journal of Remote Sensing, 1989, 10(6): 989-1003. 10.1080/01431168908903939 |
2 | CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art [J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. 10.1109/jproc.2017.2675998 |
3 | CHENG G, XIE X X, HAN J W, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756. 10.1109/jstars.2020.3005403 |
4 | ROGAN J, CHEN D M. Remote sensing technology for mapping and monitoring land-cover and land-use change [J]. Progress in Planning, 2004, 61(4): 301-325. 10.1016/s0305-9006(03)00066-7 |
5 | YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification [C]// Proceedings of the 2010 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 270-279. 10.1145/1869790.1869829 |
6 | CHERIYADAT A M. Unsupervised feature learning for aerial scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 439-451. 10.1109/tgrs.2013.2241444 |
7 | ZHANG H, SONG H J, YU B C. Application of hyper spectral remote sensing for urban forestry monitoring in natural disaster zones [C]// Proceedings of the 2011 International Conference on Computer and Management. Piscataway: IEEE, 2011: 1-4. 10.1109/caman.2011.5778867 |
8 | SWAIN M J, BALLARD D H. Color indexing [J]. International Journal of Computer Vision, 1991, 7(1): 11-32. 10.1007/bf00130487 |
9 | BHAGAVATHY S, MANJUNATH B S. Modeling and detection of geospatial objects using texture motifs [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3706-3715. 10.1109/tgrs.2006.881741 |
10 | YANG Y, NEWSAM S. Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery [C]// Proceedings of the 2008 15th IEEE International Conference on Image Processing. Piscataway: IEEE, 2008: 1852-1855. 10.1109/icip.2008.4712139 |
11 | FAN J Y, CHEN T, LU S J. Unsupervised feature learning for land-use scene recognition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2250-2261. 10.1109/tgrs.2016.2640186 |
12 | TU B, ZHANG X F, KANG X D, et al. Hyperspectral image classification via fusing correlation coefficient and joint sparse representation [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 340-344. 10.1109/lgrs.2017.2787338 |
13 | LI H T, GU H Y, HAN Y S, et al. Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine [J]. International Journal of Remote Sensing, 2010, 31(6): 1453-1470. 10.1080/01431160903475266 |
14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
15 | PENATTI O A B, NOGUEIRA K, SANTOS J A DOS. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2015: 44-51. 10.1109/cvprw.2015.7301382 |
16 | CHENG G, YANG C Y, YAO X W, et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811-2821. 10.1109/tgrs.2017.2783902 |
17 | 李玉峰,林辉.基于CNN的多光谱遥感图像地物覆盖分类[J].微处理机,2019,40(1):43-48. 10.3969/j.issn.1002-2279.2019.01.010 |
LI Y F, LIN H. Multi-spectral remote sensing image classification of ground coverage based on CNN [J]. Microprocessors, 2019, 40(1): 43-48. 10.3969/j.issn.1002-2279.2019.01.010 | |
18 | XIE J, HE N J, FANG L Y, et al. Scale-free convolutional neural network for remote sensing scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6916-6928. 10.1109/tgrs.2019.2909695 |
19 | 王鑫,李可,徐明君,等.改进的基于深度学习的遥感图像分类算法[J].计算机应用,2019,39(2):382-387. 10.11772/j.issn.1001-9081.2018061324 |
WANG X, LI K, XU M J, et al. Improved remote sensing image classification algorithm based on deep learning [J]. Journal of Computer Applications, 2019, 39(2): 382-387. 10.11772/j.issn.1001-9081.2018061324 | |
20 | LI E Z, XIA J S, DU P J, et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5653-5665. 10.1109/tgrs.2017.2711275 |
21 | 孟佳佳,王弢.基于深度残差网络的遥感数据分类[J].数字技术与应用,2019,37(1):99-101. |
MENG J J, WANG T. Remote sensing data classification based on deep residual network [J]. Digital Technology and Application, 2019, 37(1): 99-101. | |
22 | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634 |
23 | ZHANG G J, LU S J, ZHANG W. CAD-Net: a context-aware detection network for objects in remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024. 10.1109/tgrs.2019.2930982 |
24 | SU Y Z, WU Y J, WANG M, et al. Semantic segmentation of high resolution remote sensing image based on batch-attention mechanism [C]// Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 3856-3859. 10.1109/igarss.2019.8898198 |
25 | QI X Q, LI K Q, LIU P K, et al. Deep attention and multi-scale networks for accurate remote sensing image segmentation [J]. IEEE Access, 2020, 8: 146627-146639. 10.1109/access.2020.3015587 |
26 | WANG Q, LIU S T, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167. 10.1109/tgrs.2018.2864987 |
27 | WANG H N, MIAO Y Q, WANG H R, et al. Convolutional attention in ensemble with knowledge transferred for remote sensing image classification [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 643-647. 10.1109/lgrs.2018.2878350 |
28 | 边小勇,费雄君,穆楠.基于尺度注意力网络的遥感图像场景分类[J].计算机应用,2020,40(3):872-877. 10.11772/j.issn.1001-9081.2019071314 |
BIAN X Y, FEI X J, MU N. Remote sensing image scene classification based on scale-attention network [J]. Journal of Computer Applications, 2020, 40(3): 872-877. 10.11772/j.issn.1001-9081.2019071314 | |
29 | ZHANG C, WANG Q, LI X L. A multi-task architecture for remote sensing by joint scene classification and image quality assessment [C]// Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 10055-10058. 10.1109/igarss.2019.8898659 |
30 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
31 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-02-15].. 10.5244/c.28.6 |
32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
33 | ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007, 40(7): 2038-2048. 10.1016/j.patcog.2006.12.019 |
34 | PAL M. Random forest classifier for remote sensing classification [J]. International Journal of Remote Sensing, 2005, 26(1): 217-222. 10.1080/01431160412331269698 |
35 | RISH I. An empirical study of the naive Bayes classifier [J]. Journal of Universal Computer Science, 2001, 1(2):127. |
36 | ALHICHRI H S. Remote sensing datasets [DS/OL]. [2020-12-01]. . 10.1109/igarss.2018.8518874 |
[1] | 鲁永帅, 唐英杰, 马鑫然. 基于深度特征融合的无纺布低对比度浆丝缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1440-1446. |
[2] | 李默, 芦天亮, 谢子恒. 基于代码图像合成的Android恶意软件家族分类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1490-1499. |
[3] | 王艺霏, 于雷, 滕飞, 宋佳玉, 袁玥. 基于长-短时序特征融合的资源负载预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1508-1515. |
[4] | 邱永茹, 姚光乐, 冯杰, 崔昊宇. 基于半监督学习的单幅图像去雨算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1577-1582. |
[5] | 任炜, 白鹤翔. 基于全局与局部标签关系的多标签图像分类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1383-1390. |
[6] | 谢新林, 肖毅, 续欣莹. 基于神经网络架构搜索的肺结节分类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1424-1430. |
[7] | 王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1339-1346. |
[8] | 陈学勤, 陶涛, 张钟旺, 王一蕾. 融合成对编码方案及二维卷积神经网络的长短期会话推荐算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1347-1354. |
[9] | 刘志华, 陈文洁, 陈爱斌. 基于自注意力机制时频谱同源特征融合的鸟鸣声分类[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1260-1268. |
[10] | 李昆鹏, 张鹏程, 上官宏, 王燕玲, 杨婕, 桂志国. 基于卷积神经网络的时频域CT重建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1308-1316. |
[11] | 王颖洁, 朱久祺, 汪祖民, 白凤波, 弓箭. 自然语言处理在文本情感分析领域应用综述[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1011-1020. |
[12] | 滕腾, 潘海为, 张可佳, 牟雪莲, 张锡明, 陈伟鹏. 支持中文医疗问答的基于注意力机制的栈卷积神经网络模型[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1125-1130. |
[13] | 董永峰, 孙跃华, 高立超, 韩鹏, 季海鹏. 基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1207-1215. |
[14] | 潘列, 曾诚, 张海丰, 温超东, 郝儒松, 何鹏. 结合广义自回归预训练语言模型与循环卷积神经网络的文本情感分析方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1108-1115. |
[15] | 张锦, 屈佩琪, 孙程, 罗蒙. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1292-1300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||