[1] 夏小云.随机启发式搜索算法的性能分析[D].广州:华南理工大学,2015:11.(XIA X Y. On the performance analysis of randomized search heuristics[D]. Guangzhou:South China University of Technology, 2015:11.) [2] STVTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(9):889-914. [3] 杨洁,杨胜,曾庆光,等.基于信息素强度的蚁群算法[J].计算机应用,2009,29(3):865-867.(YANG J, YANG S, ZENG Q G, et al. Ant colony algorithm based on pheromone intensity[J]. Journal of Computer Applications, 2009, 29(3):865-867.) [4] 段海滨,马冠军,王道波,等.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977.(DUAN H B, MA G J, WANG D B, et al. Improved ant colony algorithm for solving continuous space optimization problems[J]. Journal of System Simulation, 2007, 19(5):974-977.) [5] 叶华乔.基于改进蚁群算法的计算机网络路由优化研究[J].计算机仿真,2015,32(4):265-268.(YE H Q. Research on routing optimization of computer network based on improved ant colony algorithm[J]. Computer Simulation, 2015, 32(4):265-268.) [6] 王宏霞,李亚龙.求解QoS最佳路由选择问题的量子蚁群算法[J].计算机仿真,2014,31(3):295-298.(WANG H X, LI Y L. Quantum ant colony algorithm for QoS best routing problem[J]. Computer Simulation, 2014, 31(3):295-298.) [7] 刘朝华,张英杰,章兢,等.蚁群算法与免疫算法的融合及其在TSP中的应用[J].控制与决策,2010,25(5):695-700.(LIU Z H, ZHANG Y J, ZHANG J, et al. Using combination of ant algorithm and immune algorithm to solve TSP[J]. Control and Decision, 2010, 25(5):695-700.) [8] 刘朝华,张英杰,李小花,等.双态免疫优势蚁群算法及其在TSP中的应用研究[J].小型微型计算机系统,2010,31(5):937-941.(LIU Z H, ZHANG Y J, LI X H, et al. Research of using binary state ACA based on immunodominance to solve TSP[J]. Journal of Chinese Computer Systems, 2010, 31(5):937-941.) [9] 邢志娟.多目标优化问题的蚁群算法研究[D].北京:中国地质大学,2010:5.(XING Z J. Study on multi-objective optimization problem based on ant colony optimization algorithm[D]. Beijing:China University of Geosciences, 2010:5.) [10] 王永.多目标路由问题中的蚁群优化算法研究[D].长沙:湖南大学,2009:5.(WANG Y. The research on multi-objective routing problems based on ant colony optimization algorithm[D]. Changsha:Hunan University, 2009:5.) [11] 王健安.基于蚁群优化算法的分布式多约束QoS路由算法研究[D].长春:长春理工大学,2014:3.(WANG J A. Research of multiple constrained distributed QoS routing based on improved ant colony algorithm[D]. Changchun:Changchun University of Science and Technology, 2014:3.) [12] 宋悦.蚁群算法在路由优化中的应用研究[D].北京:北京交通大学,2015:4.(SONG Y. The study and application of ant colony algorithm in the field of routing optimization[D]. Beijing:Beijing Jiaotong University, 2015:4.) [13] 胡朝明.几类谱共轭梯度方法理论及数值行为研究[D].长沙:中南大学,2012:9.(HU C M. Research on some types of spectral conjugate gradient methods from the viewpoints of theory and numerical performance[D]. Changsha:Central South University, 2012:9.) [14] 黄翰,郝志峰,吴春国,等.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1345-1353.(HUANG H, HAO Z F, WU C G, et al. The convergence speed of ant colony optimization[J]. Chinese Journal of Computers, 2007, 30(8):1345-1353.) |