[1] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ: IEEE, 2009: 349-356. [2] ZHANG D, WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2226-2238. [3] RASTI P, DEMIREL H, ANBARJAFARI G. Image resolution enhancement by using interpolation followed by iterative back projection[C]//Proceedings of the 201321st Signal Processing and Communications Applications Conference (SIU). Piscataway, NJ: IEEE, 2013: 1-4. [4] YANG J-C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. [5] YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2008: 1-8. [6] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2004, 1: I-I. [7] TIMOFTE R, SMET V, GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2013: 1920-1927. [8] SCHULTER S, LEISTNER C, BISCHOF H. Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 3791-3799. [9] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision, LNCS 8692. Berlin: Springer, 2014: 184-199. [10] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[EB/OL].[2016-03-10]. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. [12] SHANKAR S, ROBERTSON D, IOANNOU Y, et al. Refining architectures of deep convolutional neural networks[EB/OL].[2016-03-01]. https://arxiv.org/pdf/1604.06832v1.pdf. [13] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[EB/OL].[2016-03-01]. http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_NairH10.pdf. [14] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. [15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[EB/OL].[2016-03-01]. https://arxiv.org/pdf/1512.03385v1.pdf. [16] SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-ResNet and the impact of residual connections on learning[EB/OL].[2016-03-01]. https://arxiv.org/pdf/1602.07261.pdf. [17] BISHOP C M. Neural Networks for Pattern Recognition[M]. Oxford: Oxford University Press, 1995. [18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |